
www.manaraa.com

Graduate Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2016

Efficient computation and communication
management for all-pairs interactions
Cory James Kleinheksel
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/etd

Part of the Computer Engineering Commons

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University
Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University
Digital Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Kleinheksel, Cory James, "Efficient computation and communication management for all-pairs interactions" (2016). Graduate Theses
and Dissertations. 14969.
https://lib.dr.iastate.edu/etd/14969

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F14969&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F14969&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F14969&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F14969&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F14969&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F14969&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=lib.dr.iastate.edu%2Fetd%2F14969&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd/14969?utm_source=lib.dr.iastate.edu%2Fetd%2F14969&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu


www.manaraa.com

Efficient computation and communication management for all-pairs interactions

by

Cory James Kleinheksel

A dissertation submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Major: Computer Engineering

Program of Study Committee:

Arun K. Somani, Major Professor

Shashi Gadia

Manimaran Govindarasu

Suresh Kothari

Srikanta Tirthapura

Iowa State University

Ames, Iowa

2016

Copyright © Cory James Kleinheksel, 2016. All rights reserved.



www.manaraa.com

ii

DEDICATION

With all of my love, I dedicate this to my wife, parents, and sisters.

Thank you for all of the love, support, and encouragement!

나의 아내 은이, 아주 많이 사랑합니다.

하늘만큼 땅만큼 떡만큼!



www.manaraa.com

iii

TABLE OF CONTENTS

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

CHAPTER 1 THE PROBLEM . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Communication Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Computation Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Acceleration of applications . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.2 Relaxing the all elements present requirement . . . . . . . . . . . . . . . 5

1.2.3 Scaling all-pairs algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3.1 Quorums . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3.2 Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3.3 Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

CHAPTER 2 ALL-PAIRS COMPUTATIONS . . . . . . . . . . . . . . . . . . 9

2.1 Database Joins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Algorithm implementations . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.2 Data structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.3 Distributed database joins . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Spatial Databases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 N-Body Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.1 Approximation of forces . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.2 Parallelizing the computation . . . . . . . . . . . . . . . . . . . . . . . . 17



www.manaraa.com

iv

2.4 Metagenomics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4.1 Contributions from literature . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4.2 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.5 Gene Co-Expression Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.5.1 PCIT introduced . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5.2 Parallel PCIT algorithm using MPI . . . . . . . . . . . . . . . . . . . . 26

2.5.3 Parallel PCIT algorithm using OpenMP . . . . . . . . . . . . . . . . . . 30

CHAPTER 3 OPTICAL COMMUNICATION NETWORKS . . . . . . . . . 36

3.1 Network Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2 Light-Trails . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3 Light-Trails, Cycle Routing, and Fault Tolerance . . . . . . . . . . . . . . . . . 39

3.4 Quorums Sets for Routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.4.1 Point-to-point traffic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.4.2 Multicast traffic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.4.3 Broadcast traffic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.4.4 Efficiency analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

CHAPTER 4 ALL-PAIRS PROBLEM . . . . . . . . . . . . . . . . . . . . . . . 44

4.1 General All-Pairs Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2 Distributed All-Pairs Problem Definition . . . . . . . . . . . . . . . . . . . . . . 45

CHAPTER 5 QUORUMS AND CYCLIC QUORUMS . . . . . . . . . . . . . 48

5.1 Defining Quorum Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.2 Defining Cyclic Quorum Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.3 All-Pairs Property for Quorum Sets . . . . . . . . . . . . . . . . . . . . . . . . 51

5.3.1 All-pairs property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.3.2 Cyclic quorums have the all-pairs property . . . . . . . . . . . . . . . . 52

5.4 Redundant Cyclic Quorums Sets . . . . . . . . . . . . . . . . . . . . . . . . . . 57



www.manaraa.com

v

CHAPTER 6 ALL-PAIRS APPLICATIONS IN COMPUTATION

OPTIMIZATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.1 Bioinformatics PCIT Application . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.2 Test Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.3.1 Memory usage performance . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.3.2 Runtime execution performance . . . . . . . . . . . . . . . . . . . . . . . 66

6.4 Adding Computation Management Logic . . . . . . . . . . . . . . . . . . . . . . 70

6.4.1 Impact of cyclic quorum size . . . . . . . . . . . . . . . . . . . . . . . . 70

6.4.2 Computation management logic . . . . . . . . . . . . . . . . . . . . . . . 73

6.4.3 Impacts of managing quorum set all-pairs computations . . . . . . . . . 77

CHAPTER 7 ALL-PAIRS APPLICATIONS IN FAULT TOLERANT

OPTICAL COMMUNICATION OPTIMIZATIONS . . . . . . . . . . . . . 84

7.1 Fault Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

7.2 Paired Cycle Fault Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

7.3 Improving Fault Tolerance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

7.3.1 Additional cycle fault protection . . . . . . . . . . . . . . . . . . . . . . 88

7.3.2 Modifying the cycle routing algorithm . . . . . . . . . . . . . . . . . . . 90

7.3.3 Redundant cyclic quorums sets . . . . . . . . . . . . . . . . . . . . . . . 91

7.4 Redundant Cyclic Quorums Set - Paired Cycle Network Analysis . . . . . . . . 91

7.4.1 Fault-free operational analysis . . . . . . . . . . . . . . . . . . . . . . . 92

7.4.2 Fault tolerance operational analysis . . . . . . . . . . . . . . . . . . . . 93

7.5 Redundant Cyclic Quorums Set - Single Cycle Network Analysis . . . . . . . . 96

7.5.1 Fault-free operational analysis . . . . . . . . . . . . . . . . . . . . . . . 96

7.5.2 Fault-tolerant operational analysis . . . . . . . . . . . . . . . . . . . . . 99

7.6 Improving Single Cycle Routing Based on Redundant Cyclic Quorums . . . . . 102

7.6.1 Greedy cycle direction based on missing pairs . . . . . . . . . . . . . . . 103

7.6.2 Greedy missing pairs heuristic results . . . . . . . . . . . . . . . . . . . 106



www.manaraa.com

vi

CHAPTER 8 CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

8.1 Quorums . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

8.2 Computation Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

8.3 Communication Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

APPENDIX A OPTIMAL CYCLIC QUORUMS . . . . . . . . . . . . . . . . . 125

APPENDIX B REDUNDANT CYCLIC QUORUMS . . . . . . . . . . . . . . 129



www.manaraa.com

vii

LIST OF TABLES

Table 6.1 Input Datasets Utilized in PCIT Experiments . . . . . . . . . . . . . . 63

Table 6.2 Memory Used Per Node (GB) . . . . . . . . . . . . . . . . . . . . . . . 65

Table 6.3 Average Execution Runtimes (Seconds) . . . . . . . . . . . . . . . . . . 67

Table 6.4 Redundant Work Performed When Quorum Pairs Unmanaged . . . . . 72

Table 6.5 Managed - Memory Used Per Node (GB) . . . . . . . . . . . . . . . . . 79

Table 6.6 Managed - Average Execution Runtimes (Seconds) . . . . . . . . . . . 80

Table 7.1 Paired quorum cycle fault simulation results . . . . . . . . . . . . . . . 88

Table 7.2 Quad quorum cycle fault simulation results . . . . . . . . . . . . . . . 89

Table 7.3 Mean links (95% CI) used by paired cycles based on redundant quorums

sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

Table 7.4 Percent mean fault coverage (95% CI) of paired cycles using our redun-

dant quorum solution experiencing a single link fault. . . . . . . . . . . 94

Table 7.5 Percent mean fault coverage (95% CI) of paired cycles using our redun-

dant quorum solution experiencing two simultaneous link faults. . . . . 94

Table 7.6 Mean links used by single cycles compared to paired cycles using our

redundant cyclic quorum solution (95% CI) . . . . . . . . . . . . . . . 97

Table 7.7 Mean percent missing node pairs (95% CI) by single cycles using our

redundant quorum solution . . . . . . . . . . . . . . . . . . . . . . . . 98

Table 7.8 Percent mean fault coverage (95% CI) of our single cycle, redundant

quorum solution experiencing a single link fault. . . . . . . . . . . . . . 99

Table 7.9 Percent mean fault coverage (95% CI) of our single cycle, redundant

quorum solution experiencing two simultaneous link faults. . . . . . . . 101



www.manaraa.com

viii

Table 7.10 Comparing fault-free operation mean percent missing node pairs (95%

CI) by single cycles using our redundant quorum solution and greedy

cycle direction heuristic . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

Table 7.11 Greedy heuristic mean cycle direction flips while optimizing the redun-

dant quorum single cycle solution (95% CI) . . . . . . . . . . . . . . . 108

Table 7.12 Comparing percent mean fault coverage (95% CI) of our single cycle,

redundant quorum solution and greedy cycle direction heuristic experi-

encing a single link fault. . . . . . . . . . . . . . . . . . . . . . . . . . . 109

Table 7.13 Comparing percent mean fault coverage (95% CI) of our single cycle,

redundant quorum solution and greedy cycle direction heuristic experi-

encing two simultaneous link faults. . . . . . . . . . . . . . . . . . . . . 111

Table A.1 Optimal cyclic quorums for N = 4 to 111 . . . . . . . . . . . . . . . . . 125

Table B.1 Redundancy = 2, Cyclic quorums for N = 4 to 111 . . . . . . . . . . . 130

Table B.2 Redundancy = 3, Cyclic quorums for N = 4 to 101 . . . . . . . . . . . 133



www.manaraa.com

ix

LIST OF FIGURES

Figure 2.1 Driscoll et al. (2013) communication optimal n-body algorithm’s data

replication and distribution. Optimality achieved when c =
√
P , result-

ing in
√
P teams,

√
P replication rows, and each processor performing

the pairing between two size- N√
P

arrays of elements. Note that their

algorithm’s communication steps are not depicted in this figure. . . . . 21

Figure 2.2 High-level summary of PCIT algorithm, gene expression correllation trio

computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Figure 2.3 Assigned rows (indexstart− indexend) for approximately equal work dis-

tribution example for PMPI = 4 . . . . . . . . . . . . . . . . . . . . . . 28

Figure 2.4 Example of a column-major, non-stride-1 memory access pattern . . . 31

Figure 2.5 Example of a column-major, stride-1 memory access pattern . . . . . . 31

Figure 3.1 Four nodes in a light-trail architecture . . . . . . . . . . . . . . . . . . 38

Figure 3.2 Example light-trail node structure . . . . . . . . . . . . . . . . . . . . . 39

Figure 3.3 Cycle formed using the light-trail architecture . . . . . . . . . . . . . . 40

Figure 4.1 All-pairs of seven elements. . . . . . . . . . . . . . . . . . . . . . . . . . 45

Figure 4.2 Driscoll et al. (2013) communication optimal n-body algorithm’s data

replication and distribution. Optimality achieved when c =
√
P , result-

ing in
√
P teams,

√
P replication rows, and each processor performing

the pairing between two size- N√
P

arrays of elements. Note that their

algorithm’s communication steps are not depicted in this figure. . . . . 46



www.manaraa.com

x

Figure 5.1 A quorum set example with N elements and P = 4 processes. Set D̂

divides the N elements into P = 4 datasets D0 through D3. Quorum set

Q is then formed from sets (quorums) of these datasets, i.e., S0 through

S3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Figure 5.2 Defining a relaxed (P, k)-difference set. For a given set A = {a0, . . . , ak}

and integer P , all integers 0, . . . , (P − 1) must be formed from the differ-

ences modulus P of integer pairs from set A. Figure (a) shows an invalid

difference set corresponding to set A = {1, 2, 3} and P = 6 because no

pair of integer differences modulus 6 form dmod 6 = 3. Whereas Figure

(b) with set A = {1, 2, 4} and P = 6 is a valid difference set because all

integer differences modulus 6 are formed, i.e., 0, . . . , 5 are all present. . 53

Figure 5.3 A cyclic quorum set example with 7 processes. On the left are the 7

quorums and on the right are all of the dataset pairings. The quorums

and the corresponding pairs formed are colored. As Theorem 4 states,

all pairs have been covered by a quorum set. . . . . . . . . . . . . . . . 57

Figure 5.4 Defining a relaxed (P, k)-difference set for an R = 2 redundant cyclic

quorum. For a given set A = {a0, . . . , ak} and integer P , all integers

0, . . . , (P − 1) must be formed twice from the differences modulus P

of integer pairs from set A. Figure (a) shows an invalid difference set

corresponding to A = {1, 2, 3, 4} and P = 7 because integer differences

modulus 7 formed d mod 7 = 3 and d mod 7 = 4 only once. Whereas

Figure (b) with A = {1, 2, 3, 5} and P = 7 is a valid difference set for an

R = 2 redundant cyclic quorum because all integer differences modulus

7 were formed twice, i.e., 0, . . . , 6 are all present twice. . . . . . . . . . 61



www.manaraa.com

xi

Figure 6.1 Speedup of our cyclic quorum algorithm using (P ) parallel nodes when

compared to an optimized single node algorithm. This figure has near

identical speedup curves for the computation of three smaller datasets

that all fit within the available memory. The log-log scale shows that as

additional node resources are added our algorithm scales to utilize the

resources. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Figure 6.2 Speedup of our cyclic quorum algorithm using (P ) parallel nodes when

compared to an optimized single node algorithm. This figure has a

speedup curve for a larger dataset that would have exceeded the single

node memory resources, requiring the use of an alternate lower mem-

ory optimized algorithm. Here super-linear speedup is observed as our

cyclic quorum algorithm is able to distribute the problem and process

the input within the memory constraints. . . . . . . . . . . . . . . . . . 69

Figure 6.3 A difference set example with 4 processes. This figure with A = {1, 2, 3}

and P = 4 is a valid relaxed difference set because all integer differences

modulus 4 are formed, i.e., 0, . . . , 3 all occur one or more times. . . . . 74

Figure 6.4 A cyclic quorum set example with 4 processes to illustrate the cause

and solution to redundant work. This figure has the corresponding cyclic

quorum set on the left and the possible all-pairs formed for each on the

right. The pairs and quorum are colored with useful work performed,

while the uncolored pairs would be redundant work and should not be

performed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75



www.manaraa.com

xii

Figure 6.5 Comparing the speedup of our unmanaged cyclic quorum algorithm with

that of our algorithm with additional computation management logic (U

vs. M). Both were executed using (P ) parallel nodes with speedups in

reference to an optimized single node algorithm. Two input datasets

are compared, one with N = 39298 rows which fit within available

memory, and another with N = 45265 rows which exceeds a single

node’s memory resources, requiring the use of an alternate lower memory

optimized algorithm. For non-Singer difference sets, the managed all-

pairs computations were up to 30% faster than without the management

logic. When P corresponded to a Singer difference set, the overhead of

the management was typically less than 1%, which put the unmanaged

speedup slightly ahead. . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

Figure 7.1 Example route fault tolerance using light-trails . . . . . . . . . . . . . 85

Figure 7.2 Networks used for simulations: Figure (a) NSFNET, 14-Node/22-Link,

Figure (b) ARPANET, 20-Node/31-Link, Figure (c) American Back-

bone [Tang et al. (2011)], 24-Node/43-Link, and Figure (d) Chinese

Backbone [Tang et al. (2011)], 54-Node/103-Link. . . . . . . . . . . . . 86

Figure 7.3 Quad light-trails to provide additional cycle fault protection . . . . . . 89

Figure 7.4 Percent mean fault coverage of paired cycles using our redundant quo-

rum solution experiencing two simultaneous link faults. . . . . . . . . . 95

Figure 7.5 Percent mean fault coverage of our single cycle, redundant quorum so-

lution experiencing a single link fault. . . . . . . . . . . . . . . . . . . . 100

Figure 7.6 Percent mean fault coverage of our single cycle, redundant quorum so-

lution experiencing two simultaneous link faults. For graph clarity and

consistency NSFNET for R = 2 (Single) at 91.94% and for R = 3 (Sin-

gle) at 93.37% mean fault coverage were not included in the graph. . . 102

Figure 7.7 Mean fault coverage (%) of our single cycle, redundant quorum solution

and greedy cycle direction heuristic experiencing a single link fault. . . 110



www.manaraa.com

xiii

Figure 7.8 Mean fault coverage (%) of our single cycle, redundant quorum solution

and greedy cycle direction heuristic experiencing two simultaneous link

faults. For graph clarity and consistency NSFNET for R = 2 (Single) at

93.67% and for R = 3 (Single) at 94.88% mean fault coverage were not

included in the graph. . . . . . . . . . . . . . . . . . . . . . . . . . . . 112



www.manaraa.com

xiv

ACKNOWLEDGEMENTS

I would like to thank my major professor, Dr. Arun K. Somani. You saw something special

in me years ago when I sat through your computer architecture class. Thanks for working so

hard over the years to teach me how to think and bringing that special something out of me. I

am very proud of our work and will be forever grateful for the opportunity to study under you.

I would also like to thank all of my committee members, Drs. Shashi K. Gadia, Manimaran

Govindarasu, Suresh C. Kothari, and Srikanta Tirthapura for all of the guidance, discussions,

and helpful suggestions throughout my doctoral work and before I ever thought of starting

down this path.

Dr. David Lastine, thank you for all of your thoughtful discussions and insights on optical

network routing. Those conversations helped challenge my ideas and develop a clearer trail

forward to build upon.

Ben Holland, thank you for more late night conversations and challenging problem discus-

sions than I can count. I hope to return the favor some day.

Last, but certainly not least, thank you to an amazing family and so many great friends. I

am truly blessed to have all of you in my life. The Ph.D. journey had its ups and downs, but

you were there for me through it all. Your patience, encouragement, and support helped me

get to the finish line.



www.manaraa.com

xv

ABSTRACT

Big data continues to grow in size for all sciences. New methods like those proposed are

needed to further reduce memory footprints and distribute work equally across compute nodes

both in local HPC systems and rented cluster resources in the cloud. Modern infrastructures

have evolved to support these big data computations and that includes key pieces like our

internet backbones and data center networks. Many optical networks face heterogeneous com-

munication requests requiring topologies to be efficient and fault tolerant. The all-pairs problem

requires all elements (computation datasets or communication nodes) to be paired with all other

elements. These all-pairs problems occur in many research fields and have significant impacts,

which has led to their continued interest.

We proposed using cyclic quorum sets to efficiently manage all-pairs computations. We

proved these sets have an “all-pairs” property that allows for minimal data replication and for

distributed, load balanced, and communication-less computation management. The quorums

are O
(
N√
P

)
in size, up to 50% smaller than dual N√

P
array implementations, and significantly

smaller than solutions requiring all data. Scaling from 16 to 512 cores (1 to 32 compute nodes)

and using real dataset inputs, application experiments demonstrated scalability with greater

than 150x (super-linear) speedup and less than 1/4th the memory usage per process.

Cyclic quorum sets can provided benefits to more than just computations. The sets can

also provide a guarantee that all pairs of optical nodes in a network can communicate. Our

evaluation analyzed the fault tolerance of routing optical cycles based on cyclic quorum sets.

With this method of topology construction, unicast and multicast communication requests do

not need to be known or even modeled a priori. In the presence of network single-link faults,

our simulated cycle routing had greater than 99% average fault coverage. Hence, even in the

presence of a network fault, the optical networks could continue operation of nearly all node

pair communications.



www.manaraa.com

xvi

Lastly, we proposed a generalized R redundant cyclic quorum set. These sets guarantee

all pairs of nodes occur at least R times. When applied to routing cycles in optical networks,

this technique provided almost fault-tolerant communications. More importantly, when applied

using only single cycles rather than the standard paired cycles, the generalized R redundancy

technique almost halved the necessary light-trail resources while maintaining the fault tolerance

and dependability expected from cycle-based routing.

Problem Description

Big Data in recent years has become a focal point for science and commerce. As datasets

grow larger, traditional methods and algorithms are challenged on whether they are able to

truly scale. This has led to phrases like, “swimming in sensors, drowning in data.”

Our work addresses some of the challenges facing a particular type of big data interaction.

The interaction considered requires all elements in a set to interact with all other elements in

the set.

The all-pairs interaction is a general computation or communication problem that occurs

frequently and can be as simple as considering the shaking of hands by all attendees to a party.

More formally there is set EN , where there are N elements indexed 0 to (N − 1).

EN = {e0, e1, ..., eN−1}

The elements in this general formulation can be simple, single communication node or single

item data structures, e.g., EN could simply be all nodes in a network or be a large array of N

values. Or, elements can be complex data structures with many fields / values. Fields are not

restricted to a single data type either, as many big data problems can rely on heterogeneous

datasets.

The all-pairs interaction considers all possible pairs of elements,
(
N
2

)
.

{(e0, e1) , (e0, e2) , ..., (e0, eN−1) , (e1, e2) , (e1, e3) , ..., (e1, eN−1) , ..., (eN−2, eN−1)}



www.manaraa.com

xvii

While the simple hand shake example could be considered a symmetric interaction.

ei ↔ ej , i < j

The all-pairs interaction can be more generally represented by two separate interactions to

better represent the computational or communication complexity in those problems where the

all-pairs operation is not commutative.

ei → ej , i < j

ei ← ej , i < j

The computational complexity of this general algorithmic form is not daunting.(
N

2

)
=

(N − 1)N

2
= O

(
N2
)

In fact, even for pair computations that do not have the commutative property, the complexity is

unchanged. In general, polynomial O
(
N2
)

computations are considered highly computationally

scalable.

When performing an all-pairs data interaction on the big data scale sizes, while the compu-

tational complexity theoretically is manageable, the data management becomes complex. The

problem definition inherently requires access to the entire dataset, such that every data element

can be paired and processed with every other data element in the set. When the datasets exceed

a system’s memory size, this presents a challenge, which our methods address.

Solution Approach

For efficiency and distributed control, it is common in distributed systems and algorithms to

group nodes into intersecting sets referred to as quorum sets. Our management techniques rely

on the established quorum set theories for their efficiencies and management. We then proved

an “all-pairs” property of cyclic quorum sets, which is central to guaranteeing that all-pairs of

elements (nodes or data) are able to interact in the system.

The all-pairs data computation problem requires all data elements to be paired with all

other data elements. These all-pairs problems occur in many science fields, which has led to



www.manaraa.com

xviii

their continued interest. Our research addresses the memory and computation time challenges

of the general all-pairs big data interaction computations through the use of memory efficient

computation management techniques. Proposed were methods using distributed computing to

share the computational workload. Although the problem definition requires every data ele-

ment to have access to and interact with the entire dataset, our cyclic quorum set techniques

relax this restriction in distributed systems. This computation management is used to reduce

memory resource requirements per node and enable big data scalability. Implementation evalu-

ation of a large bioinformatics application demonstrated scalability on real datasets with linear

and at times super-linear speedups. Reductions in memory requirements per node allowed for

processing larger datasets that would not have been feasible on a single node either due to

memory or time requirements.

Similar cyclic quorum set techniques were used to address efficient and fault tolerant commu-

nication routing challenges in optical networking. Cycle-based optical network routing, whether

using SONET rings or p-cycles, provide the sufficient reliability in networks. Light-trails forming

a cycle in the network allow broadcasts within a cycle to be used for efficient multicast commu-

nications. Using the proven “all-pairs” property of cyclic quorum sets, we could guarantee all

pairs of nodes will occur in one or more quorums, so efficient, arbitrary unicast communication

can occur between any two nodes. Efficient broadcasts to all network nodes are possible by a

node broadcasting to all quorum cycles to which it belongs (O
(√

N
)

.) We analyzed node pair

communications in networks, specifically, the fault tolerance aspects of using cyclic quorum sets

to route cycles. Observed was better than 99% average single fault coverage and some node

pair communications were protected by more than one cycle.

Exploiting this redundant node pair protections revealed even greater resource efficien-

cies. Common cycle routing techniques will use pairs of cycles to achieve both routing and

fault-tolerance, which uses substantial resources and creates the potential for underutilization.

Instead, when we intentionally designed cyclic quorum sets with R redundant pairs of nodes

and utilized the R redundancy within the quorum cycles to replace the pair of cycles with just

a single cycle, we saw network resource usage almost halved. Our analysis of several networks

showed R = 2 redundant single cycles had 96.60 - 99.37% single link fault coverage, while re-



www.manaraa.com

xix

ducing resource usage by 42.9 - 47.18% on average. Increasing redundancy to R = 3 redundant

cycles maintained a 93.23 - 99.34% average fault coverage even with two simultaneous link

faults and used 38.85 - 42.39% fewer resources on average.



www.manaraa.com

1

CHAPTER 1 THE PROBLEM

Big data is having impacts across virtually all research and business fields. Many fields are

seeing orders of magnitude increases in data generated. Algorithms have the difficult challenge of

keeping up with this pace. Infrastructure like our internet backbones and data centers continue

to evolve, but meet challenges on all sides; resources, bandwidth, and fault tolerance are all

major constraints. This has led to phrases like, “swimming in sensors, drowning in data” [Drew

(2010)]. As a solution, some have turned to the cloud to fulfill their various computing needs.

They are able to rent virtually unlimited storage and compute power to meet their needs.

Our work addresses some of the challenges facing a particular type of big data interaction.

The interaction considered requires all elements (nodes or data) to interact with all other

elements in the set. This interaction can generally be referred to as an “all-pairs” interaction.

All-pairs problems are so common that in elementary schools and introductory computer

science courses they may be taught as a popular “handshake” problem [Hedegaard (2016)].

The problem goes something like this: P people attend a party and a popular greeting is to

shake hands, how many handshakes take place? After discussion and manipulation the answer

of
(
P
2

)
= P (P−1)

2 is derived.

More formally there is set EN , where there are N elements indexed 0 to (N − 1).

EN = {e0, e1, ..., eN−1} (1.1)

The elements can be simple like a single communication node or single item data structure,

e.g., EN could simply be all nodes in a network or a large array of N values. Or elements can

be complex structures with many fields. Fields are not restricted to a single data type either,

as many big data problems can rely on heterogeneous datasets. An example of a data element

with a complex structure may be a Tweet [Twitter (2016)]:



www.manaraa.com

2

{

"coordinates": null,

"favorited": false,

"created_at": "Fri Mar 25 13:45:15 +0000 2016",

"truncated": false,

...

}

The all-pairs interaction considers all possible pairs of elements,
(
N
2

)
.

{(e0, e1) , (e0, e2) , ..., (e0, eN−1) , (e1, e2) , (e1, e3) , ..., (e1, eN−1) , ..., (eN−2, eN−1)} (1.2)

While the simple hand shake example could be considered a symmetric interaction.

ei ↔ ej , i < j (1.3)

The all-pairs interaction can be more generally represented by two separate interactions to

better represent the computational or communication complexity in those problems where the

all-pairs operation is not commutative.

ei → ej , i < j (1.4)

ei ← ej , i < j (1.5)

The computational complexity of this general algorithmic form is not daunting.(
N

2

)
=
N (N − 1)

2
= O

(
N2
)

(1.6)

In fact, even for pair computations that do not have the commutative property, the complexity is

unchanged. In general, polynomial O
(
N2
)

computations are considered highly computationally

scalable.

When performing an all-pairs data interaction on the big data scale sizes, while the compu-

tational complexity theoretically is manageable, the data management becomes complex. The

problem definition inherently requires access to the entire dataset, such that every data element



www.manaraa.com

3

can be paired and processed with every other data element in the set. When the datasets exceed

a system’s memory size, this presents a challenge, which our methods address.

Our research addresses the memory and computation time challenges of the general all-pairs

big data interaction computations through the use of memory efficient computation manage-

ment techniques. Distributed computing was used to share the computational workload. Even

though the problem definition requires every data element to interact with the entire dataset,

our techniques relax this restriction in this distributed environment so not all of those interac-

tions must occur in the same compute node. This computation management is used to reduce

memory resource requirements per node and enable big data scalability.

We begin this chapter with a brief introduction to various example applications of the

all-pairs interaction. Then the remainder of this chapter will include a short itemized list of

contributions made in our work.

1.1 Communication Application

Internet backbones and data centers have become key pieces of national infrastructure rising

almost to the level of roads, bridges, electricity, and water. Optical networks in these settings

are depended upon for high speed communications in distributed algorithms, as much as they

are needed for the arbitrary point-to-point communications. Failures within a network are to

be expected and can happen as much as every couple days. Protecting against these optical

network faults is critical and there are many different approaches depending on the network

needs and individual circumstances.

For efficiency and distributed control, it is common in distributed systems and algorithms

to group nodes into intersecting sets referred to as quorum sets. Quorums sets for cycle-based

routing to efficiently support arbitrary point-to-point and multi-point optical communication

were first proposed in Somani and Lastine (2014). Cycles are created using quorums of nodes.

Within a cycle, multicasts to all nodes in that cycle are possible. The proof that cyclic quorums

have an “all-pairs” property guarantees unicast capabilities in a network using the proposed

routing technique. Exploiting the same properties efficient broadcasts can be achieved with

O(
√
N) multicasts.



www.manaraa.com

4

Our research analyzed and evaluated novel enhancement to the fault tolerance of optical

network cycle routing using optimal cyclic quorums [Kleinheksel and Somani (2015b)]. Observ-

ing communication pairs being protected by more than one cycle, we then applied established

quorum set theory and exploited the redundancies to form suitable R redundant quorums for

our optical network routing to improve resource efficiency and maintain a high degree of fault

tolerance [Kleinheksel and Somani (2015c,a)]. This was a novel method to deliver the almost

fault-tolerant capabilities in an optical network, while significantly reducing the resource uti-

lization when compared to the state-of-art techniques.

1.2 Computation Applications

All-pairs or “handshake” problem occur frequently in the computation applications. In

databases this manifests as a self-join without a join condition, forcing all tuples to interact

with all other tuples. In physics, the n-body problem predicts the position and motion of

N bodies by calculating the total forces every body has on every other body. In biometrics

applications, a similarity matrix can be formed using a set of images compared with itself using

facial recognition [Phillips et al. (2005)]. In metagenomics, finding a protein’s likeness to every

other protein is a crucial part of forming the complex graphs used in protein clustering, which

has led to new discoveries of protein functions [Chapman and Kalyanaraman (2011)].

1.2.1 Acceleration of applications

Accelerating the execution of many of these important applications has been done using

multicore CPUs, FPGAs, GPUs, Intel’s many-core MIC, and distributed clusters. In Moretti

et al. (2010) the authors provide a generalized framework to solve these all-pair classification of

algorithms and show performance improvements for biometrics and data mining applications in

a distributed system, e.g., cloud. A different approach was taken for a bioinformatics application

seeking to reconstruct gene co-expression networks. The PCIT algorithm in Reverter and Chan

(2008) was chosen to identify significant gene correlations. This method was optimized for

Intel’s multicore Xeon and many-core MIC by Koesterke et al. (2013, 2014).



www.manaraa.com

5

The generalized framework in Moretti et al. (2010) showed that efficiently distributing all

of the input data to all of the nodes prior to beginning execution resulted in faster turnaround

times than reading from the disk on demand. A seemingly obvious result, but certainly high-

lights that every element interacting with every other element leads to a natural result of

having all elements present in memory to maximize execution performance. The optimization

of the PCIT algorithm in Koesterke et al. (2013) experienced having more data than memory

available and created a second optimization strategy with longer runtimes, but had a minimal

memory usage footprint to accommodate.

1.2.2 Relaxing the all elements present requirement

N-body problems have a natural all-pairs decomposition called atom-decomposition [Plimp-

ton (1995)] that is based on equal distribution of N element responsibilities to P parallel pro-

cesses. To address load imbalances and the need to communicate all data to all processes,

the authors proposed a method to perform force-decomposition which still requires input data

replication, but reduced it to 2 arrays of size N√
P

elements per process. The authors in Driscoll

et al. (2013) showed that data replication in the system can be variable (c); and when c =
√
P ,

a lower bound on communication is achieved. When c = 1, their solution behaved similar

to atom-decomposition, although requiring only 2 arrays of N
P elements per process. When

c =
√
P , their solution behaved similar to force-decomposition and required 2 arrays of size

N√
P

elements per process.

Minimizing the amount of data replication in a distributed system, while maintaining ef-

ficient all-pairs algorithm operation, is a recurring theme in this classification of algorithms.

Quorum systems are commonly used for coordination and mutual exclusion in distributed sys-

tems [Chao and Wang (2010); Luk and Wong (1997)]. Quorum’s decentralized approach and

slow quorum growth rate compared to the system size are two of the reasons that make them a

good tool in managing replicated data [Kumar and Agarwal (2011)]. In 1985, quorums of size

O
(√

P
)

were proven using finite projective planes in Maekawa (1985). Relaxed difference sets

later were used to create size O
(√

P
)

cyclic quorum sets in Luk and Wong (1997).



www.manaraa.com

6

1.2.3 Scaling all-pairs algorithms

The bioinformatics field notably has seen an increase in data. Led by several advances

in science including Next Generation Sequencing (NGS) technology, the use of data to drive

biological and medical discoveries has become a prominent research method. This has not

come without its struggles as the size of data and computation time can easily eclipse local

resources. Hence, scaling algorithms to larger datasets and for utilizing more resources has been

a reoccurring theme in bioinformatics. The authors in Chae et al. (2013) surveyed publicly

available bio and health cloud systems. Importance was given to graphical user interfaces,

connecting to existing cloud datasets, security, and providing tools capable of running in a

cloud environment. This was where their BioVLab excelled. Since then, Chae et al. (2014) have

continued to add additional analysis tools to their Amazon cloud application.

Our research utilized the slow quorum growth rate compared to number of processes to scale

all-pairs algorithms. Given that cyclic quorum sets have an “all-pairs” property [Kleinheksel

and Somani (2016)], our solution only requires a single array of size O
(
N√
P

)
elements per

process. This being significantly less than current solutions that require all N elements per

process and up to 50% improvement over those that have used replication techniques to reduce

memory requirements to two arrays of size N√
P

elements per process.

For processes P = 4, . . . , 111, our work uses the optimal cyclic quorums from Luk and

Wong (1997) (see Appendix A for a reproduced and verified cyclic quorum listing). These

cyclic quorums are optimal in memory and computation for all Singer difference sets [Colbourn

(2010)] and near-optimal for all others. For the non-optimal difference sets, we developed a

decentralized, load balanced, and communication-less management technique to identify and

avoid all redundant computations in non-Singer difference sets. This adds greater flexibility for

users to utilize all of their local or cloud HPC resources efficiently.



www.manaraa.com

7

1.3 Contributions

1.3.1 Quorums

� Proof that cyclic quorums sets have an “all-pairs” property (Section 5.3.2)

� Verified optimal correctness of previously published cyclic quorums sets forN = 1, . . . , 111

[Luk and Wong (1997)] (Appendix A)

� Definition of R redundant cyclic quorums (Section 5.4)

� Found R = 2 and R = 3 redundant cyclic quorums sets (Appendix B)

1.3.2 Computation

� New application of cyclical quorums to facilitate scaling all-pairs data interactions in

distributed computing (Chapter 6)

� Cyclic quorums have a provable lower bound in size. This property is used to limit all-

pairs data replication leading to decreased memory usage per node and ability to scale

to larger problem sizes (Section 6.3)

� Cyclic quorums load balance all-pairs computations and scale well (Section 6.3)

� A distributed, communication-less management technique for efficient all-pairs computa-

tions (Section 6.4)

1.3.3 Communication

� Forming all-pairs of communication nodes in optical networks using pairs of light-trail

cycles based on optimal cyclic quorums sets provides greater than 99% fault tolerance

single network link faults (Section 7.2)

� Increasing the number of paired light-trails improves average single fault coverage to

greater than 99.9% (Section 7.3)



www.manaraa.com

8

� New application of R redundant cyclic quorums to facilitate all-pairs of node communi-

cations in optical networks (Sections 7.4 and 7.5)

� Increasing the R redundancy of the quorums sets, while using paired light-trail cycles

improves the average single fault coverage to greater than 99.8% with less than 23%

increase in resource usage (Section 7.4)

� Using R redundant quorums sets with single cycle routing rather than paired cycles can

significantly reduce link resource usage, while single and two simultaneous fault coverage

is only slightly reduced (Section 7.5)

� Fault-free and fault conditions can be improved in the R redundant quorum, single cycle

routing by controlling the direction of the cycle routes in the implementation (Section

7.6.1)



www.manaraa.com

9

CHAPTER 2 ALL-PAIRS COMPUTATIONS

This all-pairs or “handshake” problem manifests in many common computation problems.

In this chapter, we present a non-exhaustive list of several example applications to provide

background and context to the more general all-pairs problems our research addresses. We

specifically highlight existing methods of reducing a specific application’s runtime or computa-

tional complexity.

2.1 Database Joins

In regards to big data and data interactions it is obvious to begin by considering the decades

of contributions made to relational databases.

In relational databases, one of the foundation operations is the join. Mathematically this

can be considered a Cartesian product of two relations. Then the join query would apply a

select operation on the result tuples, this is called the join condition.

When considering the self-join, a relation is joined with itself. Without a join condition this

would give rise to an all-to-all (all-pairs) tuple interaction. Otherwise, join conditions provide

opportunities for optimization.

Considering the self-join definition there are N such tuples in a relation EN , each having

a set of attributes. To form the Cartesian product of this relation, every specific tuple ei must

interact with all other tuples in the relation EN .

This fundamental operation has been studied and researched for decades. There is not a

single problem or approach that has been successful in all circumstances either. This is primarily

due to the join condition being inherently data dependent, so different datasets result in different

behavior.



www.manaraa.com

10

Algorithm 1 Nested loops algorithm

1: for each tuple r in relation R do

2: for each tuple s in relation S do

3: if join condition on r, s is true then

4: add to result set

5: end if

6: end for

7: end for

Algorithm 2 Sort and Merge algorithm

1: Sort relation R

2: Sort relation S

3: for each tuple r in relation R do

4: while tuple s in relation S is less than r do

5: Read next tuple s in relation S

6: end while

7: if join condition on r, s is true then

8: add to result set

9: end if

10: end for

2.1.1 Algorithm implementations

From a straight forward approach, form the Cartesian product via nested loops and evaluate

the join condition (Algorithm 1). It is clear that forming the Cartesian product first will result

in O(NM) work or O(N2) work for self-join.

When the join condition is more often false than true, then the problem begins to deviate

from the all-pairs interaction problem. Here optimizations try to prevent unnecessary pairs that

will fail the join condition from ever being formed.

Sort and merge (Algorithm 2) is a common algorithm for optimizing a merge. There is

a preprocessing step where input relations are sorted based on the join condition attributes.

Once sorted, each relation need only be iterated once in order to produce the result set. Hence

reducing the work to perform a self join to O(NlogN +N) = O(NlogN). If the input relations

are already sorted on the join attributes, then the work is even further reduced to O(N).

Hash join (Algorithm 3) is another way to optimize by reducing or eliminating unnecessary

join condition operations. Here one relation will be scanned and the join condition attributes



www.manaraa.com

11

Algorithm 3 Hash join algorithm

1: hash all tuple join conditions in relation R to form a hash table

2: for each tuple s in relation S do

3: if hash of join condition on s matches a hash in the table then

4: confirm join condition is met, then add to result set

5: end if

6: end for

are hashed. When scanning the second relation, only the tuples that have hash matches to the

first relation will be processed.

2.1.1.1 Contributions from literature

Ehnasri and Navathe (1989) introduced a more I/O efficient nested loop algorithm that

processes blocks of tuples at a time rather than individually. This more efficiently accesses the

disk and memory.

Blasgen and Eswaran (1977) showed that if not much information is known about the input

relations in terms of selectivities and the join attribute is not the index of the relation, then

sorting and merging to form the join is the most efficient.

Bratbergsengen (1984) showed the efficiency of using the hash join method in eliminating

unnecessary comparisons. This method can be very efficient because both relations only have

to be scanned once. Although hash collisions reduce the efficiency, the non-equijoins present a

challenge, considering most hash functions do not produce ordered hashes.

Han et al. (2012) introduced PI-join to address some algorithm inefficiencies of joins that

have to be performed out of disk due to large data sizes combined with limited memory available.

Cache is considered and tuples are fetched in a orderly fashion. Their multiple partitioning steps

in their execution order resulted in significant performance gains both in time and data volumes

compared to other traditional methods.

Ordonez and Garćıa-Garćıa (2010) evaluated the algorithm optimization performance for

sort and merge and hash joins specifically when dealing with null and invalid keys. Hash joins

were found to process nulls and invalids better than sort and merge. Also, when there is a

significant number of invalid keys, creating a temporary relation with only tuples with valid

keys can be more efficient when performing joins.



www.manaraa.com

12

Algorithm 4 Join index algorithm

1: in order, scan the join indexes to find join condition matches

2: for each match m do

3: retreive corresponding tuples in relations R and S, then join and add to result set

4: end for

2.1.1.2 Challenges

From the fundamental perspective the join operation in databases has an all-pairs interac-

tion component. This comes through when forming the Cartesian product.

Optimizing the algorithm such that the full Cartesian product does not have to be formed

would be ideal. Hence other algorithms and enhancements on those algorithms have been

proposed over the decades. However, the selectivity of the join condition can have an impact

on the efficiency of the algorithm. In the worst case, the results are an all-pairs interaction of

the data.

Estimating the selectivity of a join condition can be difficult because it is inherently based

on the current data values in the relation. This is a motivating factor for use of data structures

to pick up where algorithms begin to have limitations.

2.1.2 Data structures

One of the challenges of the algorithms was that entire relations were typically scanned to

identify potential join condition matches. This was even more a challenge when the relation

may not have been sorted by the join condition attributes.

Join indexes are sorted relations with the join condition attributes and a pointer to the

corresponding tuple in the relation that the index is over. Hence these relations have the min-

imum data needed to evaluate the join condition match and they are sorted. Where selectivity

is reasonable, this (Algorithm 4) will reduce the I/O required to perform the join query.

B-trees further improved join indexes by storing the indexes as a tree data structure. Hence

the scanning of join indexes could still be done in order, but skipping directly to the matching

indexes became a logarithmic function rather than linear one.



www.manaraa.com

13

2.1.2.1 Contributions from literature

Valduriez (1987) introduced join indexes as a relation to identify result tuples in the original

relations. This allowed for the identification of result tuples without having to scan the entire

relations.

McCreight (1972) introduced B-trees as an effective method to store indexes. This allowed

for logarithmic search, insertions, and deletions. Where the join index enabled skipping over

unneeded relation tuples, this allowed skipping over many of the indexes as well when the join

condition was not going to be a match.

2.1.2.2 Challenges

Join indexes must be updated as their corresponding relations are updated. This incurs

some overhead, which must be justified. Similarly, the storage space does not come for free, so

under certain circumstances the indexes can be almost as large as the relations they represent.

2.1.3 Distributed database joins

When databases are distributed, there are several factors introduced [Mishra and Eich

(1992)]. Data partitioning results in data distributed across multiple systems. Sometimes the

partitioning can also include data replication for both query optimization and fault tolerance.

Depending on data location, the choice of where to process a query may be important.

Joins, when not all of the data is present at the local machine, are a challenge. Communicat-

ing all parts of a relation to where the query is takes time over a network and there simply may

not be memory to hold the data. Performance could also be improved if multiple processors

were working in parallel.

Semijoin method (Algorithm 5) can be used. Only the minimum necessary attributes from

one system are transfered to the other to perform the join. The join will find only the tuples

that would have matched the join condition in the uniprocessor algorithm, then send those

back to be joined with the corresponding matches.



www.manaraa.com

14

Algorithm 5 Semijoin algorithm

1: project only the join condition attributes of relation R

2: transfer projection to system with relation S

3: join projection and relation S

4: transfer projection join results to system with relation R

5: join projection join results and relation R

2.1.3.1 Contributions from literature

Valduriez (1982) introduced semijoins for distributed databases. This reduced the amount

of data needed to be transferred between two systems in order for a join to be performed when

not all data was present locally.

Kitsuregawa et al. (1983) introduced GRACE hash join method which could be used with

multiple processors. Hashes were placed in buckets, which could be assigned to different proces-

sors, reducing the computation time to O ((N +M) /P ), where P is the number of processors.

Krulǐs and Yaghob (2011) introduced a hash join for GPU architectures. While not dis-

tributed, it does have aspects of multiple processors dividing the same work. Value distribution

is calculated to form even sized hash buckets, when processing every tuple in each bucket

receives its own thread.

Groppe (2011) developed a parallel SPARQL engine for large Semantic Web databases.

Parallel joins using a distribution thread, merge join over partitioned inputs, and parallel

computation of operands are all discussed. Different algorithms and data situations deserve

different processing orders. They found that when the results are large enough then parallel

processing is beneficial, however parallel overheads can outweigh performance gains if the results

are small.

2.1.3.2 Challenges

Masuyama et al. (1987) showed that as local networks increase in speed in relation to disk

access, there are times where processing a semijoin projection locally prior to sending data to

neighboring system may be inefficient.



www.manaraa.com

15

Even with hash buckets distributed to multiple processors, the data values cannot necessar-

ily be predicted also potentially leading to some hash buckets being considerably larger than

others. This is where other partitioning techniques were introduced [Mishra and Eich (1992)].

Groppe and Groppe (2011) found that when the results are large enough, then parallel

processing is beneficial. However, parallel overheads can outweigh performance gains if the

results are small.

2.2 Spatial Databases

Spatial databases are unique in that tuples are related by their spatial relationship to one

another.

Tauheed et al. (2013) introduced FLAT for neuroscientists. Indexes are stored in a tree

structure with data at the leafs. Spatially close tuples form sets and are stored with one another.

Then pointers are added to neighboring sets. They were able to demonstrate far superior read

performance compared to existing techniques.

Tauheed et al. (2013) also introduced SCOUT for neuroscientists. Past tuple sets accessed

during queries are summarized and after learning from a few queries, SCOUT can predict which

sets will likely need to be accessed and prefetch them to memory. This increases hit rate and

speeds up queries.

Tauheed et al. (2013) also introduced TOUCH. In-memory joins are a challenge because

memory is a limited resource. They found that space-oriented joins caused far too many data

items to be replicated and created the potential for duplicate work. Rather they used a data-

oriented join followed by a spatial-filter to eliminate joins that spatially do not match the join

condition.

2.3 N-Body Problems

The classical N-body problem considers moving celestial objects and the gravitational forces

exerted on each other. The gravitational force between each object pair is estimated for a point

in time. Once all forces on an object were found, they could be considered together to find



www.manaraa.com

16

the total estimated force on each object. Using the current position, trajectory, and estimated

total force, the future position and trajectory for each object is estimated. This process can be

iterative using a problem specific time step interval.

The modern problem definition (sometimes referred to as many-body problem) is more gen-

eral and considers objects of any size and any interaction operation. This definition still allows

for the celestial objects with gravitational forces, but also broadens to consider applications

with microscopic elements interacting sometimes with multiple forces in play. There are many

such applications from molecular dynamics to computational chemistry to nuclear physics.

Considering this problem definition there are N such bodies each represented with multiple

physical or virtual properties in a complex data structure. To find the interaction force applied

on a specific element ei, it must interact with all other elements in the set EN .

2.3.1 Approximation of forces

The nature of many N-body applications is that elements closest to element ei have the

greatest force impacting that element. Then elements outside an application specific radius

have less impact on the element. Using this application detail enables applications to effectively

reduce computational complexity by either ignoring elements outside the radius or approximate

them without precisely computing each interaction.

2.3.1.1 Contributions from literature

Lienhart et al. (2002) used a smoothing kernel of radius parameter h. Elements outside of

radius h were ignored and contributed a small amount of error to the individual time steps.

Using this application detail their application reduced O
(
N2
)

complexity all-to-all interaction

to O (CN) complexity all-to-few interaction, where C is significantly smaller number (≈50).

Ishiyama et al. (2012) and Yokota and Barba (2012) both used tree algorithms to approx-

imate forces. The various tree algorithms have a finer granularity near the element where the

forces are strongest and then progressively have coarser and coarser granularity approximations

as the elements are further away. Their tree codes reduced the complexities to O (NlogN) and

O (N), respectively.



www.manaraa.com

17

2.3.1.2 Challenges

The problem definition still requires an all-pairs interaction. However, specific applications

may have properties enabling the dataset interaction to be reduced without substantial increases

in error. So long as the error is tolerable, then approximating the interaction may be acceptable.

2.3.2 Parallelizing the computation

The N-body problem has been a popular target for hardware acceleration. Many of the

computations are embarrassingly parallel, which allows for execution speed to be defined by

the amount of resources available, so long as the entire dataset is available to compute. When

multiple iterations are required or when the dataset is not all locally available, particular atten-

tion to communication and load balancing costs may be important particularly with algorithms

approximating forces rather than computing exact. Exact all-to-all interactions (or all-pairs)

algorithms benefit from knowing exactly how many computations will occur and can optimize

in a number of dimensions: memory, communication, data locality, etc. Approximations often

require additional information from the dataset and can change from iteration to iteration,

making it a challenge to distribute the work evenly while simultaneously being conscience of

the overheads incurred to provide changes to that distribution each iteration.

Connolly et al. (2013) argued that for the Cosmic Frontier, Astrophysics, and Cosmology

the growth of data volumes in the coming decades will be a serious challenge. This demands

continuing evolution of existing codes and development of new algorithms to handle this growth.

One of those critical applications is N-body simulations.

2.3.2.1 Contributions from literature

Lienhart et al. (2002) used an FPGA implementation for their application. Although their

design had a much slower clock speed than their CPU, the FPGA allowed for 60 simultaneous

floating-point operations (3.9 Gflops) and eliminated memory bottlenecks. At the time a general

workstation was achieving only 100 Mflops due to the fewer floating-point units available and

memory access bottlenecks.



www.manaraa.com

18

Algorithm 6 Atom-Decomposition

1: All-to-all communicate current N element positions

2: Compute local element neighbors

3: Compute forces due to neighbors

4: Update N/P local elements

Arora et al. (2009) exploited multicore platforms for a similar goal to maximize the number

of floating-point operations executed simultaneously. Multicore CPUs, the cell processor, and

GPUs were all targeted on a single machine.

Chinchilla et al. (2004) proposed a GPU implementation of the all-to-all (all-pairs) N-body

gravitational simulation and showed how to optimize for low-bandwidth situations. Van Meel

et al. (2008) also used GPUs to solve N-body simulations. Their work was two algorithms, one

an all-pairs interaction, and the other a short-range interaction, both in molecular dynamics.

Moore et al. (2008) modeled gravitational forces using an all-to-all (all pair-wise) N-body

algorithm implemented in CUDA.

Madsen and Filinski (2013) proposed a new streaming language for data-parallel executions.

One of their targeted applications was an all-to-all (all-pairs) N-body simulation. It performed

better than the CPU implementation, but still lagged the optimized GPU implementation.

Ishiyama et al. (2012) used a HPC machine to scale to a trillion bodies. This implementation

used MPI/OpenMP hybrid to target 10’s of thousands of processors. Yokota and Barba (2012)

similarly used a HPC machine, but their’s targeted 100’s of GPUs. These and others like them

are important to demonstrate scaling the N-body problem across multiple machines and not

requiring the entire EN dataset to be available at each node.

Plimpton (1995) described three distributed parallel approximation algorithms for molecular

dynamics computations. Each have positives and negatives, which motivates understanding

specific application scenarios in order to choose the most appropriate algorithm.

1. Atom-Decomposition (Algorithm 6) - Each processor is assigned N/P elements. All

global atom positions are collected. Compute which neighbor elements are within the

threshold distance of each element. Compute forces due to all neighbors. Update the

N/P elements assigned.



www.manaraa.com

19

Algorithm 7 Force-Decomposition

1: Collect N/
√
P element positions in assigned row

2: Collect N/
√
P element positions in assigned column

3: Compute which row-column element interactions are neighbors

4: Compute forces due to neighbors

5: Reduce row-wise global forces occurring on N/P local elements

6: Update local elements

Algorithm 8 Spatial-Decomposition

1: Exchange element positions with neighboring boxes

2: Compute all neighbors of local box elements

3: Compute forces due to neighbors

4: Update local box elements

5: Reassign elements that left local box

2. Force-Decomposition (Algorithm 7) - Processors are arranged in a 2D grid. Each pro-

cessor is assigned an N/
√
P x N/

√
P block of forces out of a global grid of N x N forces

formed by an all-to-all element interaction. Collect the N/
√
P element positions for the

assigned rows and columns. Compute which elements in the block of assigned forces are

neighbors. Compute the assigned forces corresponding to those neighbors. Each processor

still owns N/P elements as was the case in Atom-Decomposition. Reduce force calcula-

tions performed by other processors in the same row of the global grid (only
√
P processors

participating,) such that forces are reduced at the processor owning the element. Update

the N/P elements assigned.

3. Spatial-Decomposition (Algorithm 8) - Processors are arranged spatially in a 3D grid.

Each processor is assigned a box and all elements inside the box. Only elements in neigh-

boring boxes (i.e. 26 neighbor boxes) may interact with local elements, so collect any

of those elements which will be interacting. Compute which elements in the box are

neighbors and include elements from neighboring boxes that will be interacting as well.

Compute the forces due to those neighbors. Update the elements with the assigned box.

As elements leave a box they are reassigned to the box they enter.

Driscoll et al. (2013) proposed a new variation on data replication with the goal of reducing

communication through a blending of Atom-Decomposition algorithm (no replication) and



www.manaraa.com

20

Force-Decomposition algorithm (
√
P replication, 2 N/

√
P elements per processor), both by

Plimpton (1995). The authors proved communication optimality given a c replication factor.

The all-pairs interaction algorithm divides P processors into P/c teams (columns), where

c is the replication factor (rows.) The N elements are divided across the P/c teams with the

processors in row 0 being the team leaders. The leaders broadcast the elements to the members

in their team. All team members make a copy of the elements prior to performing an initial

shift and force update calculation. Then P/c2 shift and update calculation steps are performed.

After all shift steps, all element pairs have been formed and a reduction step within the team

will combine all force updates for a particular iteration.

When c = 1, the algorithm is similar to Atom-Decomposition. When c =
√
P like in Figure

2.1, the algorithm is similar to Force-Decomposition. In general, larger replication led to better

performance due to the reduction in communication. Exception to this was when the shift costs

were reduced or almost eliminated, but the increase in team members made the reduction step

more expensive.

Driscoll et al. (2013) also proposed an approximate version of their all-to-all N-Body al-

gorithm using a cutoff distance. The elements are distributed to teams based on spatial-

decomposition, hence a team’s neighboring teams are spatially close and farther teams are

not as close. The shift procedure was modified such that communication only happened within

the cutoff distance M . When a force update moves an element into a neighbor’s space, the

element is re-assigned.

2.3.2.2 Challenges

Load balancing an approximation algorithm is an example of something that can be a chal-

lenge. If unbalanced, regardless the number of resources, the performance could suffer more

than having fewer resources. If distribution of work is by element, then there are situations

where some elements may have more elements near them than others, hence more force cal-

culations to precisely compute and fewer to approximate. If distribution of work by spatial

location, similarly some processors may be responsible for more elements than others. How-

ever, distributing of work by force calculations can also suffer under certain circumstances. To



www.manaraa.com

21

Figure 2.1: Driscoll et al. (2013) communication optimal n-body algorithm’s data replication

and distribution. Optimality achieved when c =
√
P , resulting in

√
P teams,

√
P replication

rows, and each processor performing the pairing between two size- N√
P

arrays of elements. Note

that their algorithm’s communication steps are not depicted in this figure.

maintain balance, each distribution method requires a bit of extra work potentially eating into

the parallel efficiency.

Both all-pairs interaction and approximation algorithms require at least some degree of

global knowledge forcing communication and sharing of parallel compute data. Managing the

amount of data that needs to be shared and when it gets shared, both impact the amount of

communication overhead incurred due to parallelization.

Driscoll et al. (2013) faced a few challenges that many parallel N-Body all-pairs and approx-

imate algorithms face. They showed that communication contributed significantly to the overall

runtime of N-Body algorithms. Replication helped to reduce these costs, but they experienced

exceptions to more is always better.



www.manaraa.com

22

In the all-pairs algorithm, the reduction of force updates began to be significant once other

communication costs were reduced and in one case performing a reduce communication caused

an increase in comparison to a smaller replication factor. Their method also was unable to

take advantage of Newton’s third-law, which Plimpton (1995) used where it was beneficial. It

is unclear if it could have been beneficial in this case. They also maintained 2 Nc/P elements

in addition to the memory to track force updates, which is 2 N/
√
P when c =

√
P and still

required a communication shift in addition to the element broadcast.

In the approximated cutoff algorithm, there are fewer computations performed and more

forces are approximated due to the cutoff. Any communication that takes place becomes more

significant to the overall runtime. Load balancing with spatial distributions is a challenge as

described by Plimpton (1995) and observed by Driscoll et al. (2013). Assuming uniform spatial

distribution cannot always be guaranteed and even the edges of the simulation will experience

imbalance simply due to having fewer neighbors than those in the center of the simulation.

This imbalance causes larger communication delays as lightly loaded processors have to wait

for heavier, center processors. Re-assigning elements as they move through the simulation area

also incurs overheads.

2.4 Metagenomics

Metagenomics looks at systems of organisms. Sometimes 1000’s of organisms are working

together to perform functions and identifying those functions along with the proteins and genes

that express those function is very valuable. Examples of such system environments could be

soil, saliva, human digestion, etc.

2.4.1 Contributions from literature

Chapman and Kalyanaraman (2011), Rytsareva and Kalyanaraman (2012), and Wu and

Kalyanaraman (2013) are all performing protein clustering to try to group like proteins and

potentially identify functions of proteins that had not been identified before. Their approach

approximates every proteins likeness to every other protein and begins to form graph edges.



www.manaraa.com

23

Using OpenMP, MapReduce, and GPUs, respectively, they accelerate the graph clustering

aspect of the algorithm.

2.4.2 Challenges

Graph clustering is still a challenging problem and heuristics like those presented are trying

to approximate the best fits.

Additionally, the protein-to-protein likeness is an expensive task, so methods are used to

approximate this and reduce its complexity from all-pairs to K, few-to-few interactions. If an

exact likeness measurement is needed, then the brute force all-pairs is the only option.

2.5 Gene Co-Expression Networks

From large DNA strands segments attributed to genes can be identified using data analysis

and simple pattern techniques. Identification is not enough though. What do these genes do?

What are their purpose?

Gene expression is the next key to connecting biological function to specific genes. Discover-

ing these connections can have significant impact on biology and health. Still there remain genes

with undefined functional roles. This is where identifying networks of potentially coordinating

genes may connect genes with known functions.

Gene expression experiments have been improving over the last decade, but still often

generate noisy data. This motivated creating methods to utilize the data despite the noise.

Multiple recent bioinformatics research publications utilize or develop gene co-expression

network construction algorithms in their data analysis workflows. Fortes et al. (2012) used

the PCIT algorithm in their succession of analyses identifying significant gene correlations

in their heifer first service conception dataset. Gibson et al. (2013) introduced RMTGeneNet

analyzing the functional robustness of the Random Matrix Theory (RMT) approach to gene

co-expression network construction. Ficklin and Feltus (2013) used the RMTGeneNet package

to generate their co-expression networks for their rice analysis. Despite the quality networks

generated by PCIT, they found the tool could not be adapted to their processing workflow

where RMTGeneNet could.



www.manaraa.com

24

Figure 2.2: High-level summary of PCIT algorithm, gene expression correllation trio computa-

tion

While there are multiple techniques, the following subsections will look closer at the evo-

lution of the partial correlation coefficients combined with an information theory approach

(PCIT).

2.5.1 PCIT introduced

The partial correlation coefficients combined with an information theory approach (PCIT)

algorithm was introduced by Reverter and Chan (2008). The algorithm can be used for gene

co-expression network reconstruction and help to identify novel biological regulators. The tech-

nique processes N genes by building an O
(
N2
)

matrix and using a guilt-by-association heuristic

to sequentially analyze node triplet partial correlations identifying whether a gene expression

correlation is or is not meaningful (Figure 2.2).

It is not as simple as considering:

if (AC correlation exists) & (BC correlation exists) then AB (2.1)

Rather, the gene expression correlation between genes A and B is only considered significant



www.manaraa.com

25

Algorithm 9 Original 2008 PCIT algorithm

1: for A← 1, N − 2 do

2: for B ← A+ 1, N − 1 do

3: for C ← B + 1, N do

Given C, is correlation between A and B significant?

4: end for

5: end for

6: end for

once it can be shown that it is still significant after the contribution of gene C has been

statistically removed.

First step is the partial correlations. Using a O
(
N2
)

matrix of all gene expression cor-

relations, where rAB is the gene expression correlation between genes A and B, the partial

correlations are found using the following:

rAB,C =
rAB − rACrBC√(

1− r2AC
) (

1− r2BC
) (2.2)

rAC,B =
rAC − rABrBC√(

1− r2AB
) (

1− r2BC
) (2.3)

rBC,A =
rBC − rACrAB√(

1− r2AC
) (

1− r2AB
) (2.4)

Using the partial correlations, the contribution of C to the gene expression correlation of

genes A and B. If the following is true then the correlation between genes A and B is not

significant:

(|rAB| ≤ |εrAC |) & (|rAB| ≤ |εrBC |) (2.5)

where ε =
1

3

(
rAB,C
rAB

+
rAC,B
rAC

+
rBC,A
rBC

)
(2.6)

This calculation is performed for all values of A, B, and C (Algorithm 9).

2.5.1.1 Contributions of Reverter and Chan (2008)

The PCIT algorithm improved upon existing gene co-expression analysis by removing ar-

bitrary global thresholding techniques and replacing it with a data driven, local thresholding

technique. Each gene trio had a separate threshold calculated, which enabled better tolerance



www.manaraa.com

26

to the noise in the data. This was demonstrated by their ability to significantly reduce the

number of false positives compared to the existing techniques (although important to bioin-

formatics, these alternate techniques will not be explored in this survey which only indirectly

considers bioinformatics as one of many applications.)

2.5.1.2 Challenges

As can be seen in Algorithm 9, a O
(
N3
)

computational complexity will increase dramat-

ically in time as N scales. For small N = 1000, computations are already approximately 1

Billion. A factor of 10 increase in N , translates to 1000x increase in computations. This has

dramatic impact on how quickly data can be processed, and with the rate of growth in bioinfor-

matics data generation, this becomes a major bottleneck. This challenge is partially overcome

by an algorithm in section 2.5.2.

As the number of genes, N , scales so does the memory required. If there are N genes, then

there are O
(
N2
)

correlations and supporting data stored in memory. When N = 1000, storing

a few megabytes of data can be handled without issue. Scale N by 10 or 100 and consider that

double precision can be valuable in some applications of the algorithm, and what was once a few

megabytes can quickly become almost 150 gigabytes. 150GBs is still manageable given CyEnce’s

fat (1TB) node, but it definitely makes this approach less than scalable for many without such

resources. Even Amazon’s AWS cloud providing high performance computing clusters for rent

by-the-hour can be limiting. For HPC applications like the PCIT algorithm, they offer their

latest generation of compute-optimized “C4” instances [Amazon (2016b)]. These do have Intel

Xeon E5 v3 processors; but even with the largest instance (“c4.8xlarge”), they only have 36

virtual CPUs and 60GB of memory [Amazon (2016a)]. This challenge is partially overcome by

an algorithm in section 2.5.3.

2.5.2 Parallel PCIT algorithm using MPI

Watson-Haigh et al. (2010) introduced a scalable MPI version of the PCIT algorithm in

2010, which could parallelize the computations across a cluster of computers whether local or



www.manaraa.com

27

Algorithm 10 DefineTasks

1: procedure DefineTasks(N,PMPI)

2: workcumsum[0]← 0

3: for j ← 1, N do

4: workj ← (N−j)(N−j−1)
2

5: workcumsum[j]← workcumsum[j − 1] + workj
6: end for

7: workIDEAL ← N !
3!(N−3)!PMPI

8: for procID ← 0, PMPI − 1 do

9: j ← 1

10: while workIDEAL ∗ procID ≥ workcumsum[j] do

11: j ← j + 1

12: end while

13: indexstart[procID]← j

14: end for

15: indexend[PMPI − 1]← N

16: for procID ← PMPI − 2, 0 do

17: indexend[procID]← indexstart[procID + 1]− 1

18: end for

19: end procedure

cloud. The parallel implementation was introduced as an R package making it more accessible

to those already using the R environment for other aspects of their scientific workflow.

This was an important contribution to address the long execution time of the original

sequential algorithm. The execution time could be hours or days for even medium sized networks

(5,000 - 10,000 genes), when problem sizes could easily reach 47,000 genes or more a parallel

implementation was critical.

Their MPI method was an extension of the original 2008 algorithm. This method started

PMPI processes in parallel. Each would allocate and compute an O
(
N2
)

matrix of gene corre-

lations, although only the upper or the lower triangle would be required for computation.

The authors presented a simple method to distribute the
(
N
3

)
work approximately equally to

all PMPI processes. This had a theoretical speedup of PMPI , i.e. execution time of O
(

N3

PMPI

)
,

where PMPI is the number of MPI processes.

The root(0) MPI process distributes the workload using Algorithm 10. The PCIT algorithm

performs
(
N
3

)
total calculations; however for ease of coding though, the work was viewed and



www.manaraa.com

28

Figure 2.3: Assigned rows (indexstart − indexend) for approximately equal work distribution

example for PMPI = 4

divided by rows (i.e., genes), effectively reducing the work division to a problem of
(
N
2

)
row(gene)

pairings divided across PMPI processes.

Algorithm 10, Lines 2-6 calculated the work required to process each row(gene) and the

cumulative work up to that row. Row j is paired with all rows greater than j for computational(
N−j
2

)
work (Line 4). Ideally every process will get

(N3 )
PMPI

work (Line 7). Each MPI process is

assigned a starting work index and an ending work index by the root(0) process (Lines 8-18).

This approximately equally load balances the work distribution such that each of the PMPI

processes would perform close to the ideal amount of work. A graphical representation of work

division for PMPI = 4 processors is showing in Figure 2.3.

The decision to divide work by rows made for a small sacrifice in workload balance across

processors, although graphically in Figure 2.3 the imbalance appears significant. The appear-

ance of imbalance is due to the 3 nested For-Loops in Algorithm 9. Smaller starting indexes

for gene A For-Loop correspondingly will cause many more inner B and C For-Loop iterations.

Algorithm 10 accounts for this (Lines 2-6) and distributes approximately equal amounts of

total work (Lines 8-18.)



www.manaraa.com

29

Each of the PMPI processes calculates a result O(N2) matrix using the PCIT algorithm for

their subset of assigned rows (indexstart − indexend). Lastly the result matrices from all PMPI

are sent to the root(0) MPI process for merging into a single O(N2) result matrix.

2.5.2.1 Contributions of Watson-Haigh et al. (2010)

Their algorithm has the potential to dramatically improve the execution time. The un-

derlying computation is embarrassingly parallel and hence for the computation could scale

near linearly. The more resources available, the greater PMPI , which translated into the better

execution times.

Using the R platform enabled bioinformatics researchers already using that platform to eas-

ily deploy it in their workflow. This had the potential to expand the userbase of the algorithm.

Although this implementation used MPI, the embarrassingly parallel nature of the prob-

lem combined with providing all data to all MPI processes, meant that their implementation

did not have the typical communication overheads experienced in other applications where

the algorithm necessitates MPI communication to perform the computations. Had there been

communication overheads during any of the computation loops then it would have been much

harder to achieve their near linear computation scaling.

2.5.2.2 Challenges

The algorithm requires all data to be available in order to allow all rows(genes) to interact

with all other rows(genes). Hence there was a natural requirement that each MPI process have

a copy of the O
(
N2
)

gene correlation data.

This requirement appears to be the same memory challenge as the original algorithm [Re-

verter and Chan (2008)] bounding the maximum problem size at the memory size on the pro-

cessing node. However, commonly multiple MPI processes execute on the same cluster node in

the multi-core processor architectures. This dramatically increases memory demand to as much

as O
(
2PCOREN

2
)
, where PCORE is the number of cores per node. Therefore the maximum

problem size for multi-core architectures means making a choice between two options:



www.manaraa.com

30

� one MPI process per core, resulting in division of the memory available equally to each

of the processes for maximum execution speed

� one MPI process per node, resulting in the maximum memory available to each process

in order to tackle those larger sized networks

Even medium sized networks that worked with the 2008 algorithm may run out of memory in

the multi-core environment with as few as two cores per processing node, i.e. double the memory

requirement per node. This forces the choice to sacrifice possible execution speed improvements

from idle cores. Also, it could be considered an inefficient use of resources. Thus for large

networks processed on clusters with multi-core architectures, the theoretical execution time

was proportionately higher at O
(

N3

Pnode

)
, where Pnode is the number of distributed processing

nodes.

Conclusion is that while targeting execution time improvements was successful, the max-

imum problem size (i.e., scalability of problem size) remained the same and possibly even

decreased. This memory complexity limits scalability to the larger problem sets.

2.5.3 Parallel PCIT algorithm using OpenMP

Koesterke et al. (2013, 2014) introduced dramatic algorithm updates reducing the compu-

tation complexity for the common case and optimized the parallel code further where possible.

Their work was an extension of the original serial algorithm [Reverter and Chan (2008)]. This

parallel version used OpenMP for a single node.

The first dramatic algorithm change was to enable stride-1 memory access, which produced

as much as a 24x speedup. When bringing a value into the cache processing, the cache line

that it belongs to also contains multiple neighboring array values. Figure 2.4 demonstrates

a non-stride-1 memory access within a column-major memory layout. Although column 2 is

reused in each time, columns 3, 4 and 5 are brought into the cache one after each other. Figure

2.5 demonstrates a stride-1 memory access of neighboring values in columns 1 and 2 within a

column-major memory layout.



www.manaraa.com

31

(a) (b) (c)

Figure 2.4: Example of a column-major, non-stride-1 memory access pattern

(a) (b) (c)

Figure 2.5: Example of a column-major, stride-1 memory access pattern

Fortran has column-wise memory layouts. When accessing a multiple dimensioned array

the first index should be incremented in order to access a value in the neighboring memory

address (stride-1). Whereas incrementing the second (or third, etc.) index, strides some N to a

non-neighboring address.

The original Fortran code (Algorithm 11) had the inner loop incrementing the second index.

The stride-1 code (Algorithm 12) reversed the loop variables such that the inner loop now

increments the first index. As an aside, had the original code been implemented in C the row-

major ordering of the memory would have had stride-1 memory access pattern and the new

loop variables would not.

Algorithm 11 Before, not stride-1

1: for A← 1, N − 2 do

2: for B ← A+ 1, N − 1 do

3: for C ← B + 1, N do

4: rAB ← c (A,B)

5: rAC ← c (A,C)

6: rBC ← c (B,C)

...

7: end for

8: end for

9: end for



www.manaraa.com

32

Algorithm 12 After, stride-1

1: for C ← 1, N − 2 do

2: for B ← C + 1, N − 1 do

3: for A← B + 1, N do

4: rAB ← c (A,B)

5: rAC ← c (A,C)

6: rBC ← c (B,C)

...

7: end for

8: end for

9: end for

Computing divisions and square roots are costly operations. The original code had both of

these operations:

rAB,C =
rAB − rACrBC√(

1− r2AC
) (

1− r2BC
) (2.7)

rAC,B =
rAC − rABrBC√(

1− r2AB
) (

1− r2BC
) (2.8)

rBC,A =
rBC − rACrAB√(

1− r2AC
) (

1− r2AB
) (2.9)

ε =
1

3

(
rAB,C
rAB

+
rAC,B
rAC

+
rBC,A
rBC

)
(2.10)

In addition, the same indexes may be computed multiple times across different loop iterations.

So the updated code created two more O
(
N2
)

matrices to store precomputed values for these

frequently computed and expensive operations.

riAB =
1

rAB
(2.11)

risAB =

√
1(

1− r2AB
) (2.12)

This changed the loop computations to the cheaper multiplication operations.

rAB,C = (rAB − rACrBC) ∗ risAC ∗ risBC (2.13)

rAC,B = (rAC − rABrBC) ∗ risAB ∗ risBC (2.14)

rBC,A = (rBC − rACrAB) ∗ risAC ∗ risAB (2.15)

ε = one third ∗ (|rAB,C ∗ riAB|+ |rAC,B ∗ riAC |+ |rBC,A ∗ riBC |) (2.16)



www.manaraa.com

33

Algorithm 13 Algorithm with early exit

1: for C ← 1, N − 1 do

2: for B ← C + 1, N do

3: for A← 1, N do

4: if A == B‖A == C then

5: continue to next A

6: end if

...

7: if (|rBC | ≤ |εrAB|) & (|rBC | ≤ |εrAC |) then

8: pBC ← 0

9: break out of the inner loop

10: end if

11: end for

12: end for

13: end for

The two previous changes were important, but this (Algorithm 13) was the key algorithm

change that reduced the
(
N
3

)
→ O

(
N3
)

algorithm to a O
(
N2+ε

)
, where 0 ≤ ε ≤ 1. Line 3 uses

both the upper and lower triangles of the O
(
N2
)

matrix of gene expression correlations, which

also simplified the code (line 7) that determined non-significant correlations that used to be

three separate conditional statements. The dramatic change came from recognizing that once

a gene pair correlation was found to not be significant that it would not toggle and become

significant again. This allowed for breaking early out of the inner For-Loop (Line 9.) If the pair

is found to not be significant quickly, then the execution time could decrease by a factor as

much as N in the best case.

Additionally, optimizations were done to vectorize the inner loop code to better utilize all

processor resources. Because breaking early from a vectorized loop is not permitted, care was

taken to chuck the loop processing. Flags were set at each vectorized loop iteration, and if the

condition was met at the end of the chunk processing, then the inner loop was broken out of.

Parallel processing further decreased the computation execution time near linearly. The

OpenMP framework uses multiple execution threads in a shared memory model. With the

shared memory model only a single copy of the input, precalculated values, and result matrices

O(4N2) is required.



www.manaraa.com

34

Algorithm 14 Parallel algorithm with OpenMP

1: !$omp parallel do schedule(dynamic,10) &

2: !$omp shared(...)

3: !$omp private(...)

4: for C ← 1, N − 1 do

...

5: end for

Unlike the MPI method, this OpenMP method (Algorithm 14) does not require complicated

work distribution methods. The loop processing is automatically broken into independent loop

executions to execute in parallel across local lightweight threads. The framework can also handle

dynamic work scheduling (Line 1) to ensure the O(N2+ε) work is distributed keeping all threads

load balanced and finishing their work approximately at the same time.

This algorithm can only be executed on a single node and OpenMP uses the shared memory

model, so it is not necessary to send or merge results in this method as all parallel threads are

using the same address space.

Recognizing the scaling the problem size (i.e., larger N genes) can quickly grow larger than

available memory, Koesterke et al. (2013) proposed an alternate algorithm with very low mem-

ory requirements as well. Rather than precomputing and storing three large O
(
N2
)

matrices

for the correlations and precomputed expensive computations, the low-memory algorithm recal-

culates the gene expression correlations as needed. This is a trade-off. Of course this increased

execution time of the computation; but when the problem size exceeds memory available, their

low-memory algorithm is an option.

2.5.3.1 Contributions of Koesterke et al. (2013, 2014)

Their implementation sought to further reduce the execution time of the PCIT algorithm.

The most dramatic of which was converting the original O
(
N3
)

algorithm to a O
(
N2+ε

)
algorithm for a theoretical speed up of N . Several other contributions further added more

speed up gains.

Precomputing expensive computations that were referenced multiple times, require two

additional O
(
N2
)

matrices, but accelerated those areas of the code. This method required



www.manaraa.com

35

O(4N2) memory for the input, precalculated values, and result data. This is only double from

the original sequential algorithm so this method faces approximately the same problem size

limitations, while delivering much improved execution time.

Also, writing the code to better use processor resources through vectorization helped. For

their parallel implementation they chose a shared memory model with OpenMP, which avoided

the multi-core memory scaling issue experienced using the MPI method before.

Their standard algorithm and the original algorithm both were limited in problem size

scalability. Their low-memory algorithm is an application specific answer to that problem. This

is important such that even with limited resources, a time trade-off can be made in order to

even be able to compute the results.

2.5.3.2 Challenges

Their execution time improvement was dramatically successful; however, their algorithm

required twice the memory as the original for the same problem. This effectively decreases the

maximum problem size capability (i.e., scalability of problem size.) This memory complexity

limits scalability to the larger problem sets.

Both the standard and alternate low-memory algorithm used the OpenMP framework,

limiting their execution to a single node. Bioinformatics workflows commonly utilize cluster

environments [Chae et al. (2013, 2014)] that more resources are available to scale memory and

computation complexities further than this algorithm can do.



www.manaraa.com

36

CHAPTER 3 OPTICAL COMMUNICATION NETWORKS

Fiber-optic lines make up the foundation of many networks across the globe. Failures within

a network are to be expected and can happen as much as every couple days [Lastine et al.

(2012)]. Protecting against these optical circuit faults is critical and there are many different

approaches depending on the network needs and individual circumstances. SONET rings can

be used to protect point-to-point and shared paths while enabling failure location. Using a pre-

configured p-cycle backup [Grover and Shen (2003)], can also protect all node pair connections.

Knowing the unicast or multicast requests a priori is often not possible. This constraint

makes protection against faults in those arbitrary communication paths a challenge. An effi-

cient all node pairs protection scheme supporting both unicast and multicast communication

is necessary.

For efficiency and distributed control, it is common in distributed systems and algorithms

to group nodes into intersecting sets referred to as quorum sets. In Somani and Lastine (2014),

it is shown that efficiency and distributed control can also be accomplished in optical network

routing by applying the same established quorum set theory.

The next sections establish the foundation and context to our work to enhance optical

network fault tolerance and efficiency.

3.1 Network Model

No two fiber-optic networks are the same. Some stretch hundreds of kilometers, while other

networks are contained within buildings or rooms. Regardless of the physical environment,

these optical circuits are depended upon for high-speed communications. Thus, it is important

to extract the network’s critical components that affect its ability to deliver reliable, arbitrary

point-to-point and multi-point communications.



www.manaraa.com

37

These fiber-optic networks consist of several transmitters and receivers interconnected by

fiber-optic cables. As you might expect, transmitters and receivers are typically found together

and generically called an optical node. The cables form the links (i.e., edges) between those

nodes, which leads to a convenient model of a network in terms of a graph G = (V,E). V are

the set of nodes in the network and E are the set of edges.

Edge (ei, ej) is a fiber-optic link connecting nodes ei and ej in the network, where ei, ej ∈ V

and (ei, ej) ∈ E. It is a general assumption that the same set of optical wavelengths are available

on all edges in E. The number of wavelengths available per optical fiber is dependent on the

fiber-optic cables and the transmitter/receiver pairs.

3.2 Light-Trails

Lightpaths were a critical building block in the first optical communications, but required

significant traffic engineering and aggregation to support point-to-point communication, or

pay the penalty of low resource utilization on the fiber-optic link. Lightpaths cannot support

multicast traffic. Light-trails were proposed in Gumaste and Chlamtac (2003); Chlamtac and

Gumaste (2003) as a solution to the challenges facing lightpaths and could be built using

commercial off-the-shelf technology. In the years since the introduction of light-trails, significant

contributions have been made to enable adoption and advance the architecture [Lastine et al.

(2012); Fang et al. (2004); Li et al. (2008); Zhang et al. (2011); Somani et al. (2011)].

Light-trails enable fast, dynamic creation of an unidirectional optical communication chan-

nel. This communication channel, unlike prior lightpaths, allows for channel receive and trans-

mit access to all connected nodes, making them more suitable for IP-centric traffic [Fang et al.

(2004)]. Point-to-point communications from an upstream node to a downstream node can be

scheduled on the shared light-trail. Similarly, an upstream node can multicast to any number

of downstream nodes.

A scheduling protocol is in place to avoid collisions within a light-trail and controls when

nodes are able to transmit to downstream nodes. The scheduling is generally assumed to occur

over a control channel, which may or may not be separate from the shared optical fiber that is

being used for the light-trail.



www.manaraa.com

38

Figure 3.1: Four nodes in a light-trail architecture

An example four-node light-trail can be seen in Figure 3.1. Optical shutters allow for wave-

length reuse within the network. Start and end nodes have their optical shutters in the off state,

while intermediate nodes have their optical shutters in the on state. This effectively isolates an

optical signal to a specific light-trail and allows for reuse of optical wavelength(s) elsewhere in

the network.

Nodes can receive from the incoming signal while the signal is simultaneously continu-

ing to downstream nodes, sometimes referred to as a drop and continue function. The node

structure can be seen in Figure 3.2. DWDM fiber-optic networks use reconfigurable add/drop

multiplexers (ROADMs) to demux incoming signals into separate wavelengths, then to mux

the wavelengths before being output once again. Each wavelength can separately support the

light-trail architecture, allowing multiple light-trails to share the same edge in the network.

Next-generation ROADMs further increase add/drop and switching flexibility while reducing

costs [Ji and Aono (2010)]. Early technology supported only a few wavelengths; however, the

latest devices may support over 100 channels, hence allowing multiple light-trails to share the

same edge in the network for a combined over 1-Terabits/s [Agrawal (2007)].

Light-trail communication is all optical and uses the same wavelength(s) from start to end

node. Being all optical avoids any energy inefficiencies and time delays associated with unneces-

sary Optical-to-Electrical-to-Optical (O/E/O) conversions at intermediate hops. Transmissions

within long haul networks, potentially passing through one or more nodes, used to be limited

by the optical signal to noise ratio (OSNR). In recent years, several advancements and miti-



www.manaraa.com

39

Figure 3.2: Example light-trail node structure

gating techniques have allowed for this limitation to be reduced, and in some cases, completely

removed. One such advancement was the erbium- and ytterbium-doped optical fiber ampli-

fier. These amplifiers compensate for signal losses and allow for signals to travel thousands of

kilometers [Agrawal (2007)].

3.3 Light-Trails, Cycle Routing, and Fault Tolerance

Point-to-point and multi-point traffic requests have a set of nodes C = {ei, ..., ej} that wish

to communicate and need to be protected against network faults. Establishing a primary and

backup multicast path from every node to every other node in C can be a waste of resources.

Several methods protect the path or links along the route through an independently found tree

or cycle. In this work, we utilize the light-trail architecture in the form of a cycle (Fig. 3.3).

The bidirectional cycle will both route the multi-point request and protect it at the same time

using fewer resources.

Figure 3.3 is simply a light-trail where the start and end node is the same node, referred

to as the hub node. The hub node has its optical shutters in the off state, while intermediate



www.manaraa.com

40

Figure 3.3: Cycle formed using the light-trail architecture

nodes have their optical shutters in the on state. The resources at each hub node can be utilized

to allow all node pairs communication on the cycle using only one light-trail. Traffic from a

node to nodes downstream requires a single transmission. Traffic from a node to an upstream

node must undergo Optical-to-Electrical-to-Optical (O/E/O) conversion at the hub node and

be transmitted on the light-trail a second time.

Alternately, we choose to set up a pair of light-trails, one in each direction. This enables

upstream communications without the energy inefficiencies and time delays associated with

O/E/O conversions. It also has fault tolerance properties.

Additionally, if traffic in the network is expected to be significantly different than equal

traffic between all node pairs, multiple light-trails can be used to support those specific cycles

expecting heavier traffic.

Failures within an optical network are to be expected. The generalization of p-cycle pro-

tection to allow for path and link protection was proposed by Grover and Shen (2003). P-

cycle protection of unicast and multicast traffic networks requires preconfiguration, and the

offline nature allows for the efficient cycles to be selected [Zhang and Zhong (2008); Zhang

et al. (2008)]. Ramamurthy et al. (2003) examined both path-based and link-based protec-

tion schemes in WDM networks. The use of path-pair protection, link-based shared protection,

spanning paths, and p-cycles to protect multicast sessions have all been proposed for WDM

networks as well [Singhal et al. (2003); Qing and Ning (2005); Luo et al. (2006); Zhang and



www.manaraa.com

41

Zhong (2007); Feng et al. (2008)]. The Optimized Collapsed Rings (OCR) single link protection

heuristic was developed to address the heterogeneous, part multicast / part unicast, nature of

WDM traffic [Khalil et al. (2005)].

The multi-point cycle routing algorithm (MCRA) uses bidirectional cycles for fault tolerance

and is capable of supporting SONET rings and p-cycles [Lastine et al. (2012)]. Although finding

the smallest cycle supporting the multi-point communication is NP-Complete, the authors were

able to show that their heuristic performed within 1.2 times of the optimal cycle size. ECBRA is

a significant improvement of MCRA and outperforms the OCR heuristic [Somani et al. (2011)].

ECBRA heuristic balances optimality and speed, taking O
(
|E| |C|3

)
steps to find a close

to optimal cycle. First, a modified breadth first search is performed on each node in set C of

required communication nodes. The goal is to find a shortest path in G that also has the best

ratio of nodes from set C versus total nodes on the path. The heuristic gives preference to

paths with 2-degree C nodes as these 2-degree nodes are required to be a part of the cycle.

To complete the cycle, a path from the sink node returning to the source node must be

found. No links may be used twice. If all nodes in C are in the cycle, then the cycle search is

complete. Otherwise, a third step is required to add any missing nodes.

If needed, the final step iteratively removes edges from the cycle and inserts paths through

missing nodes in C. Because insertion of the node can be cheaper by removing some links from

the cycle rather than others, the optimal edge removal from the cycle and path replacement is

computed for each missing node insertion.

3.4 Quorums Sets for Routing

Defining quorums and their relationship to all-pairs problems is in Chapter 5. However, it

is important to establish quorums relationship to the foundation and context of our optical

networking research. The network model G = (V,E) that we are using was defined in Section

3.1. Quorums sets cover N entities, in this case N = |V | optical network nodes. The number

of entities, N , also defines the number of small subsets, i.e., quorums, that will be used in our

solution.



www.manaraa.com

42

Somani and Lastine (2014) used quorums for efficient point-to-point, multicast, and all-

to-all traffic requests in optical networks. This is important because traffic in many optical

networks is heterogeneous meaning the routing framework must be able to handle all types.

Point-to-point, multicast, and all-to-all traffic can be routed through an optical network

with N cycles based on cyclic quorums. The following breaks down the handling of different

traffic request types on the quorum supporting rings.

3.4.1 Point-to-point traffic

Somani and Lastine (2014) used cyclic quorums sets (see additional definitions in Chapter

5) as their basis for cycle routing to guarantee all possible node pairs occurred in at least one

cycle (proven in Kleinheksel and Somani (2016)).

Lastine (2014) observed that node pairs may appear in multiple cycles and suggested using

this to the network’s advantage for load balancing. When new requests arrive and the source-

destination node pair occur in multiple cycles, then the network could choose which cycle to

service the request by selecting the light-trail cycle with the least load. Taking this one step

further, Somani and Lastine (2014) proposed making cycles with cyclical quorums larger than

the minimum required to further improve load balancing opportunities.

3.4.2 Multicast traffic

Optimally, if all multicast participants belong to the same cycle, then one cycle can be

used. Realistically though, dynamic requests often will not be of this nature. Requests will

span multiple quorums and/or be larger than a single quorum cycle. Hence in the worst case,

no more than k cycles are required to efficiently route and protect traffic for each multicast

traffic request (more discussion on this bound in the broadcast traffic discussion, Sect. 3.4.3).

For multicast cases requiring only a few cycles to communicate with all participants, then

Li et al. (2008) presented an algorithm for light-trail ring networks that can be used. Using

their techniques, a routing plan can be efficiently created.

Somani and Lastine (2014) proposed a multicast solution for requests known a priori and are

smaller or equal in size to single cyclic quorum. In that case, the node ids of the participating



www.manaraa.com

43

nodes could be mapped to a quorum guaranteeing that if a cycle route was found, their multicast

traffic could also efficiently be routed. As the number of requests increase, the complexity of

this process increases.

3.4.3 Broadcast traffic

Broadcast traffic is simply the worst case of a multicast traffic request. The upper bound

of requiring no more than k cycles to route and protect broadcast traffic can be described

as follows. In Chapter 5, any element will occur in at most k quorums. In those k quorums,

all other entities must be present in order to form necessary point-to-point pairs as described

before (Sect. 3.4.1 and proven by Kleinheksel and Somani (2016)). Hence, any optical node can

communicate on all k quorum cycles that it is a member and reach all other optical nodes,

thereby efficiently serving any dynamic broadcast request.

3.4.4 Efficiency analysis

Somani and Lastine (2014) compared the routing cycles based on cyclic quorum sets to

that of more traditional point-to-point path-based connections. The traditional method used

nearly double the number of resources and this was before considering any fault tolerance.

Similar results were observed regarding hardware required at each optical node to support the

traffic as well. This supports their claim that routing optical cycles based on cyclic quorums is

efficient.



www.manaraa.com

44

CHAPTER 4 ALL-PAIRS PROBLEM

The all-pairs problem (or “handshake” problem) occurs in many different fields and occurs

in a broad classification of algorithms. On the surface the problem is very straight forward as

shown in Figure 4.1. Given a set of elements (seven in our example), all elements are paired

with all other elements. Notice that it is not necessary to explicitly form a (e1, e0) pair because

the pair can be formed by the (e0, e1) pair already present.

4.1 General All-Pairs Problem Definition

The pseudocode for a general all-pairs algorithm would look like Algorithm 15. This could

be applied to the pairing of any N elements. Those elements can be communication nodes in a

network needing to exchange data with all other nodes. Equally likely, they can be a set of N

data items needing to be paired and computed with all other data items.

Stated more formally:

Set of N elements EN = {e0, e1, . . . , eN−1} (4.1)

Pair(ei, ej), where 0 ≤ i < N − 1 and i < j < N (4.2)

Equation 4.1 enumerates the N elements being paired, while Equation 4.2 performs all

pairings resulting in
(
N
2

)
= N(N−1)

2 element pairings.

Algorithm 15 General all-pairs algorithms

1: Given: Array EN
2: for i← 0 to N − 2 do

3: for j ← i+ 1 to N − 1 do

4: Perform pair (ei, ej)

5: end for

6: end for



www.manaraa.com

45

Figure 4.1: All-pairs of seven elements.

4.2 Distributed All-Pairs Problem Definition

Applications for all-pairs computations can have very large input data and the time to

compute a data element pairing can be significant. This motivates a need to use additional

computation resources and hence, distribute the work across multiple cooperating processes.

This might be in a local HPC system or in rented cluster resources in the cloud.

The distributed all-pairs problem distributes the
(
N
2

)
element pairings across P processes.

For this one can assume that N � P . Methods to perform this distribution of work and

data vary, e.g., Watson-Haigh et al. (2010); Moretti et al. (2010); Plimpton (1995); Driscoll

et al. (2013). Some implementations Watson-Haigh et al. (2010) give all of EN to all processes

and each process is responsible for a different portion of the
(
N
2

)
element pairings. Other

implementations have mechanisms to generate different subsets and then compute the global

pairing of all of EN by pairing individual subsets.

For example in Figure 4.2, Driscoll et al. Driscoll et al. (2013) distribute N data elements

evenly across P
c team columns, i.e., forming

∣∣∣D̂∣∣∣ = P
c datasets. To achieve the communication

optimal lower bound, they showed that the replication factor should be c =
√
P . Each member

in a team column receives a dataset copy of the same N√
P

data elements. Then, an additional N√
P

data element array is copied and shifted from within their respective replication row resulting



www.manaraa.com

46

Figure 4.2: Driscoll et al. (2013) communication optimal n-body algorithm’s data replication

and distribution. Optimality achieved when c =
√
P , resulting in

√
P teams,

√
P replication

rows, and each processor performing the pairing between two size- N√
P

arrays of elements. Note

that their algorithm’s communication steps are not depicted in this figure.

in all processors holding a pair of datasets (Di, Dj). Their algorithm does this shift copy in

such a way to generate all of the respective data pairings.

The general algorithm design approach for these distributed problems takes N data elements

and groups them into smaller datasets, often a disjoint division by the number of processes P .

However, Driscoll et al. (2013) for example used divisions by P
c . Equation 4.3 enumerates this

set of P datasets. Datasets are a subset of the original dataset D (Eq. 4.4) and all elements

from D must be present in at least one of the subsets (Eq. 4.5).

Set of P datasets D̂ = {D0, D1, . . . , DP−1} (4.3)

Di ⊆ D, i ∈ 0, 1, . . . , P − 1 (4.4)

D =
P−1⋃
i=0

Di (4.5)



www.manaraa.com

47

Equation 4.6 describes the global pairing of all datasets Di and Dj . This is in contrast

to Equation 4.2, which preforms the pairing of particular elements ei and ej . Additionally, in

Equation 4.6 the range of index j is altered to allow for the pairing of Di with itself. This

is unnecessary in Equation 4.2 because elements in general would not need to be paired with

themselves; however once placed in a subset, it is still necessary that elements within a subset

be paired with others within the same subset and not simply with only other subsets.

Pair(Di, Dj), where 0 ≤ i < P − 1 and i ≤ j < P (4.6)

The global pairing of P datasets described must take place at some distributed process. In

order for this to occur, there must be a process assigned to perform the pairing of (Di, Dj) and

that process must have datasets Di and Dj available locally in order to carry out the pairing

computation. To denote the set of datasets available to a particular process, we use set Si,

where i is the process’s id. Si is a subset of D̂ (Eq. 4.7).

Si ⊆ D̂, i ∈ 0, 1, . . . , P − 1 (4.7)

Just because a process has datasets in their set Si does not mean they must compute all

of the possible pairings though. Often there is a work assignment process for these distributed

all-pairs algorithms. All or a subset of the datasets available can be paired to complete the

distributed all-pairs problem. For example in Driscoll et al. (2013), at any one time a process

would only have two datasets available so all (1) dataset pairings are computed. Whereas in

Watson-Haigh et al. (2010), all of the data was available to each process, but processes were

assigned only a subset of the possible pairings.

In the next chapter, we introduce the quorum sets that we use our all-pairs solutions.



www.manaraa.com

48

CHAPTER 5 QUORUMS AND CYCLIC QUORUMS

In distributed communication and algorithms, coordination, mutual exclusion, data replica-

tion and consensus implementations have grouped P processes or nodes into sets called quorums

[Kumar and Agarwal (2011)]. This organization can minimize communications in operations

like negotiating access to a global resource or reaching a joint, distributed decision.

A quorum set minimally has the property that all quorums must intersect. Specifically for

distributed implementations, it is also desirable that each quorum have equal work and equal

responsibility within the quorum set. Not every grouping of nodes into sets (quorums) will

result in having these three properties, nor will the quorum sizes be minimal. Maekawa (1985)

proved the lower bound on the size of a quorum set with these three properties. Cyclic quorum

sets have these properties and we use them for efficient all-pairs communication, computation,

and data replication management.

In the next sections we define what a quorum set is. We will be applying this to management

of datasets in our computation applications, which look like distributed all-pairs problems (Sec-

tion 4.2) and also applying this to management of optical cycle routing in our communication

applications, which look like general all-pairs problems (Section 4.1). The general all-pairs prob-

lem pairs all elements in EN and the distributed all-pairs problem pairs all subsets in D̂. For

the purpose of quorum definition, these sets are interchangeable. However for clarity, rather

than expressing using both element and dataset representations, we will use the D̂ dataset

representation throughout.



www.manaraa.com

49

Figure 5.1: A quorum set example with N elements and P = 4 processes. Set D̂ divides the N

elements into P = 4 datasets D0 through D3. Quorum set Q is then formed from sets (quorums)

of these datasets, i.e., S0 through S3.

5.1 Defining Quorum Sets

Set Q is a set of subsets (Eq. 5.1). Set Q is a quorum set, when Q’s subsets covers all of D̂

(Eq. 5.2) and all subsets also have non-empty intersections (Eq. 5.3).

Q = {S0, . . . , SP−1} (5.1)

P−1⋃
i=0

Si = {D0, . . . , DP−1} = D̂ (5.2)

Si ∩ Sj 6= ∅, ∀ i, j ∈ 0, 1, . . . , P − 1 (5.3)

Figure 5.1 provides a visual representation of a quorum set for four processes. D̂ is a set of

four datasets, each containing a portion of the N elements. A quorum per process, S0 through

S3, make up the quorum set Q. Each quorum can be seen to be a subset of the larger D̂ and

that all datasets in D̂ are also present in Q. Additionally, each Si set shares (intersects) at least

one Di dataset with the other Sj sets. For example, S0 shares dataset D0 with both S2 and S3

and shares dataset D1 with both S1 and S3.



www.manaraa.com

50

Additionally, it is desirable that each quorum Si in the quorum set be of equal size (Eq.

5.4), such that there is equal work and it is desirable that each dataset Di be contained in

the same number of quorums (Eq. 5.5), such that there is equal responsibility. Both of these

properties can be seen by inspection in Figure 5.1. All S0 through S3 contain the same k = 3

number of datasets (i.e., equal work) and counting the occurrences of each of the datasets D0

through D3 reveals that each occur k = 3 times in Q.

|Si| = k, ∀ i ∈ 0, 1, . . . , P − 1 (5.4)

Di is contained in k Sj ’s, ∀ i ∈ 0, 1, . . . , P − 1 (5.5)

Not every grouping of nodes into sets (quorums) will result in having these three properties,

nor will the quorum sizes be minimal. The lower bounds for the maximum individual quorum

size (i.e., |Si|) in a minimum set is k, where Equation 5.6 holds and (k−1) is a power of a prime,

proved through equivalence to finding a finite projective plane [Maekawa (1985)]. Solving for k

in Equation 5.6 results in a quorum size of k ≈
√
P datasets.

P ≤ k(k − 1) + 1 (5.6)

5.2 Defining Cyclic Quorum Sets

Cyclic quorum sets are based on cyclic block design and cyclic difference sets. However,

searching for optimal sets requires an exhaustive search [Luk and Wong (1997)]. Cyclic quorum

sets are unique in that once the first quorum (Eq. 5.7) is defined the remaining quorums in the

set can be generated via incrementing the indices (modulus to keep indices within bounds is

not shown in Equation 5.8 for conciseness).

S0 = {D0, . . . , Dj} (5.7)

Si = {D0+i, . . . , Dj+i} , ∀ i ∈ 0, 1, . . . , P − 1 (5.8)



www.manaraa.com

51

For simplicity, assume D0 ∈ S0 without loss of generality (any one-to-one re-mapping of

indices can result in this assumption). This cyclic property can be seen in Figure 5.1 on Page

49. The datasets contained in S1 all have indices one greater than the datasets found in S0.

Similarly, S2’s dataset indices are two greater than those in S0 and rather than containing the

D2+2 = D4 dataset, which does not exist in figure, the modulus with P = 4 results in S2

containing D(2+2)mod4 = D0 dataset.

For our work, we used the P = 4, . . . , 111 optimal cyclic quorums from Luk and Wong (1997)

(see Appendix A for a reproduced and verified cyclic quorum listing). In the next section, we

define and show a proof [Kleinheksel and Somani (2016)] that cyclic quorum sets have an

all-pairs property that makes them ideal for all-pairs problems.

5.3 All-Pairs Property for Quorum Sets

Cyclical quorums were introduced in the previous section as having a small size (|Si| =

k ≈
√
P ) and equal work/responsibility properties. However, it is not immediately evident how

these small, equable cyclic quorum sets can support the pairing of all {D0, . . . , DP−1} datasets

to solve all-pairs problems.

As all-pairs algorithms scale using multiple processes and distribute the
(
N
2

)
pairs, it re-

mains necessary that all pairs of elements are present in at least one process’s memory in order

to efficiently perform the pairing. Parallels with how this applies to the all-pairs computations

may be evident; however, restating this to better clarify the connection with all-pairs commu-

nications may be needed. Networks require all nodes to be able to communicate, i.e.,
(
N
2

)
pairs.

As networks grow it can become impractical to have every node connected directly to every

other node. Rather it may be more realistic that nodes will cooperate to pass messages through

multiple hops from source to destination. If we establish a set of such routings to execute all

possible node pair communications, then here too we would need to make sure that all node

pairs are present in at least one such routing.

In this section we define the all-pairs property for quorum sets and provide a proof that

cyclical quorum sets satisfy this property.



www.manaraa.com

52

5.3.1 All-pairs property

In Section 4.2, we described how methods of distributing the work and data vary, e.g.,

Watson-Haigh et al. (2010); Moretti et al. (2010); Plimpton (1995); Driscoll et al. (2013).

These all shared the same two basic components:

1. Processes each have a subset of the global data (Eq. 4.7)

2. Across the processes all dataset pairs are formed (Eq. 4.6)

Some implementations [Watson-Haigh et al. (2010)] gave all of D to all processes guarantee-

ing all element pairs could be formed. Other implementations have mechanisms to generate data

subsets and permute them in a defined, predictable way to perform the global element pairing.

Figure 4.2 on Page 46 showed a high level example of the distribution developed by Driscoll

et al. (2013), where N data elements were evenly distributed and a shift copy permutation was

used to generate all of the respective dataset pairings.

In order to define the all-pairs property for a distributed system, we first assign each process

i a set Si of datasets as previously stated in Equation 4.7. Then the following constraint must

hold for the all-pairs property to be satisfied:

∃Si 3 (Dj , Dk) ∀ j, k ∈ 0, 1, . . . , P − 1, where Si ∈ Q (5.9)

Equation 5.9 states that for every pairing of datasets in D̂ there exists at least one process’s

set Si that contains the pair. Distributed systems with this all-pairs property can be used to

satisfy Equation 4.6 from Page 47, that defined the work necessary to compute the distributed

all-pairs problem.

5.3.2 Cyclic quorums have the all-pairs property

Our all-pairs methods utilize cyclic quorums to satisfy the all-pairs property with minimal

node resources and communication. Each process i is assigned a quorum Si of datasets. Def-

inition 1 and Theorems 2 and 3 by Luk and Wong (1997) establish the relationship between

cyclic quorum sets and relaxed difference sets. We use this relationship as part of our proof in

Theorem 4 that cyclic quorums satisfy the all-pairs property [Kleinheksel and Somani (2016)].



www.manaraa.com

53

(a) (b)

Figure 5.2: Defining a relaxed (P, k)-difference set. For a given set A = {a0, . . . , ak} and integer

P , all integers 0, . . . , (P − 1) must be formed from the differences modulus P of integer pairs

from set A. Figure (a) shows an invalid difference set corresponding to set A = {1, 2, 3} and

P = 6 because no pair of integer differences modulus 6 form d mod 6 = 3. Whereas Figure (b)

with set A = {1, 2, 4} and P = 6 is a valid difference set because all integer differences modulus

6 are formed, i.e., 0, . . . , 5 are all present.

Definition 1. Set A = {a0, . . . , ak} modulus P, ai ∈ 0, . . . , P − 1 is a relaxed (P, k)-difference

set if for every d 6= 0 modulus P, ∃ (ai, aj) , ai, aj ∈ A such that ai − aj = d modulus P .

Definition 1 [Luk and Wong (1997)] defines a relaxed difference set as a set of integers whose

values are greater than or equal 0 and less than P. It has a restriction that every integer from

0 to (P-1) must also be able to be formed from the difference of some pair of integers in the set

(using modulus when necessary). Figure 5.2 illustrates this definition through two examples.

Figure 5.2 (a) forms all of the differences for A = {1, 2, 3} on the top and then performs the

modulus P = 6 on the bottom. This is not a valid difference set because dmod6 = 3 is missing.

Figure 5.2 (b), however, is a valid difference set because the differences for A = {1, 2, 4}modulus

P = 6 form all integers 0, . . . , (P − 1).

Theorem 2. The cyclic quorum set Q defined by set Si = {a0 + i, . . . , ak + i} modulus P, i ∈

0, . . . , P − 1 is a relaxed (P, k)-difference set A = {a0, . . . , ak} modulus P, ai ∈ 0, . . . , (P − 1).

The intuition for Theorem 2 [Luk and Wong (1997)] relies on the quorum set’s intersection

property, Si ∩ Sj 6= ∅, ∀ i, j (Eq. 5.3).



www.manaraa.com

54

Proof. By contradiction, assume that set A was not a relaxed difference set, then there would

be value d 6= 0 modulus P that no difference (ai − aj) modulus P, ai, aj ∈ A equaled.

Given that every quorum intersects in the set Q (Eq. 5.3), there must be a shared item in

S0 and Sd, where d ∈ 0, . . . , (P − 1). Equation 5.10 assumes the shared item is at indices i and

j, respectively, hence the shared item S0,i and Sd,j are differenced on the left-hand side.

Using the cyclic quorum set definition, the values for the items are substituted on the right

side. Equation 5.11 uses the quorum intersection to simplify the left side to 0 before rebalancing

to show that the assumption that there was no d = (ai − aj) modulus P is false, hence set A

is a relaxed difference set.

S0,i − Sd,j = (ai + 0)− (aj + d) modulus P (5.10)

ai − aj = d modulus P (5.11)

Theorem 3. The relaxed (P, k)-difference set A = {a0, . . . , ak} modulus P is a cyclic quorum

set Q defined by set Si = {a0 + i, . . . , ak + i} modulus P, i ∈ 0, . . . , P−1 and ai ∈ 0, . . . , (P−1).

The intuition for Theorem 3 [Luk and Wong (1997)] again relies on the quorum set’s inter-

section property, Si ∩ Sj 6= ∅, ∀ i, j (Eq. 5.3).

Proof. By contradiction, assume that there were quorums Sx and Sy that did not intersect,

i.e., they violated Equation 5.3 and hence set Q was not a quorum set.

Quorums Sx and Sy both have elements at indices i and j, respectively, where i, j ∈ 0, . . . , k.

Differencing these two elements results in Equation 5.12, where on the right the values for the

elements are substituted using the cyclic quorum set definition. To show that Sx,i = Sy,j for

some combination of indices i and j, we set the left side to zero and rebalance for Equation

5.13. We are given that A is a relaxed difference set, so all differences dmodP can be made from

elements in A. Hence, there must be some combination of indices i and j, where i, j ∈ 0, . . . , k

that result in ai − aj = y − xmod P = d mod P . This result confirms that Sx,i = Sy,j for some



www.manaraa.com

55

i and j and shows that our assumption that Sx and Sy that did not intersect was false, hence

set Q is a quorum set.

Sx,i − Sy,j = (ai + x)− (aj + y) modulus P (5.12)

ai − aj = y − x modulus P (5.13)

Theorem 4. The cyclic quorum set Q defined by set Si = {a0 + i, . . . , ak + i} modulus P, i ∈

0, . . . , P − 1 satisfies the all-pairs property (Section 5.3)

Theorem 4 [Kleinheksel and Somani (2016)] uses the relationship between all differences

occurring in a difference set (Definition 1) and that cyclic quorums are based on difference sets

(Theorems 2 and 3) to prove that cyclic quorums satisfy the all-pairs property.

Proof. By contradiction, assume that the all-pairs property is not satisfied. Then there must

be a pair of integers (ax, ay), ax, ay ∈ 0, . . . , P − 1 that are not present together in any quorum

Si ∈ Q.

Integer pair (ax, ay) have the following differences:

(ax − ay) modulus P and (ay − ax) modulus P (5.14)

From Theorem 2, we know that A = {a0, . . . , ak} is a relaxed difference set and that all

differences d 6= 0 modulus P exist. So, the differences formed by (ax, ay) are also formed at

least once from the difference set A. Assume that integers (ai, aj), ai, aj ∈ A form those specific

differences:

(ai − aj) modulus P and (aj − ai) modulus P (5.15)

Using the cyclic quorum set definition and distributive property of modular arithmetic,

Equation 5.16 shows all Si cyclic quorums form the same differences. So the differences in



www.manaraa.com

56

Equation 5.14, formed by the integer pair (ax, ay) not present together in any quorum, are

formed in every cyclic quorum Si.

(ai − aj) mod P = (ai +m)− (aj +m) mod P

= Sm,i − Sm,j mod P and

(aj − ai) mod P = (aj +m)− (ai +m) mod P

= Sm,j − Sm,i mod P,

∀m ∈ 0, . . . , P − 1

(5.16)

Equation 5.16 reveals that all cyclic quorums have the missing differences in Equation 5.14.

The cyclic ai+m modulus P definition guarantees there is an m that ai+m modulus P equals

ax and the difference with aj will still hold such that aj + m modulus P equals ay too (Eq.

5.17).

ax = (ai +m) modulus P = Sm,i

ay = (aj +m) modulus P = Sm,j

(5.17)

Equation 5.17 show that integers (ax, ay), ax, ay ∈ 0, . . . , P − 1 are present together in

quorum Sm defined by difference set A and integer m modulus P. This contradicts the assump-

tion that the pairs are not present together, hence cyclic quorum sets do satisfy the all-pairs

property.

Figure 5.3 is a visualization of cyclic quorum sets having the all-pairs property. The quorums

on the left are colored in various shades and the corresponding dataset pairs that can be formed

are colored that same shade on the right. All dataset pairs on the right are covered. Also note

that all quorums performed the same amount of work and were able to cover the same number

of pairs, so the data distribution results in load balanced work.

To follow Theorem 4 at a high level with Figure 5.3, one can pick any two numbers in

0, . . . , 6, e.g., 2 and 6. Making the assumption 2 and 6 are not present together would result

in the all-pairs property not being satisfied. Notice that quorum S0 has datasets with indices

corresponding to the difference set A = {0, 1, 3}. The difference of the two chosen numbers

(modulus 7 as necessary), e.g., 2− 6 = −4mod 7 = 3, is then used to find the pair of numbers



www.manaraa.com

57

Figure 5.3: A cyclic quorum set example with 7 processes. On the left are the 7 quorums and

on the right are all of the dataset pairings. The quorums and the corresponding pairs formed

are colored. As Theorem 4 states, all pairs have been covered by a quorum set.

in A = {0, 1, 3} that when differenced and modulus 7 result in the same difference, e.g., 3−0 =

3 mod 7 = 3. Lastly, beginning with that pair from A just found, e.g., 3 and 0, one can begin

incrementing both numbers (modulus 7 as necessary) until finding the original pair of numbers

assumed not to be present together, e.g., 2 and 6. Finding the pair of numbers in the same

quorum set proves the assumption was false and the all-pairs property holds.

5.4 Redundant Cyclic Quorums Sets

In this section we define and generalize R redundant cyclic quorums sets. Cyclic quorum

sets were proven to have an “all-pairs” property in the previous section. In our communication

applications, the quorum-based cycle routing solution used these cyclic quorums to form a set

of communication cycles which were shown to be almost fault tolerant in fiber optic networks

[Somani and Lastine (2014); Kleinheksel and Somani (2015b)].

As defined in Section 5.1, there are P quorums in a quorums set (Q) and each quorum has

k datasets. In analysis of networking capabilities, we are interested in whether every node can

communicate with every other node (all-pairs). Equation 5.18 considers the number of pairs

within a quorum, e.g., the pairs made between k nodes communicating with (k−1) other nodes

in a single quorum. Equation 5.19 considers the total pairs formed by all P quorums in the set.



www.manaraa.com

58

For convenience we set M to be the total pairs for a given network with P nodes and k optimal

quorum size.

k(k − 1)

2
= O(k2) (5.18)

P
k(k − 1)

2
= O(Pk2) (5.19)

M = O(Pk2) (5.20)

When the quorum size, k, is minimal or larger, every pair of nodes (ei, ej) occurs together

within a quorum in the set at least once (proven in Sect. 5.3.2). Optical networking, however,

requires all directional point-to-point pairs to exist, i.e., both pairs (ei, ej) and (ej , ei). Pre-

viously this had been addressed by pairing each cycle with the same cycle and its direction

reversed.

It was observed by Lastine (2014) that the quorum-based cycle routing solution had some

node pairings occurring together in multiple cycles and it was proposed that these could be used

for load balancing. As an alternative to that option, Kleinheksel and Somani (2015c) added a

requirement that every pair (ei, ej) would occur together within at least two quorums rather

than just one. Exploiting the natural occurrence of redundant pairs is an attempt to eliminate

the need for paired cycles, thus moving the redundancy from the paired cycles and putting the

redundancy in the quorums themselves.

The number of quorums in the solution remained the same P , hence to create the additional

pairs the quorum size had to be enlarged to k̂. Equation 5.21 calculates the number of node

pairs in quorums of size k̂. Equation 5.22 is our requirement that the total number of pairs have

doubled from the original total pairs, M . Finally, Equation 5.23 solves for size k̂ in relation to

optimal k.

P
k̂(k̂ − 1)

2
= O(P k̂2) (5.21)

O(P k̂2) = 2M (5.22)

k̂ ≈
√

2k (5.23)



www.manaraa.com

59

This result is powerful. The number of node pairs doubled (2x), but the size of k only

increased by a factor of
√

2. Using this reduced growth rate to our advantage, many node pairs

can be created without substantially increasing the resources used. Additionally, this growth

rate is far slower than simply duplicating a cycle, hence significantly challenging the need for

paired cycles and opening the door for considerable resource savings.

Still there are applications that may benefit from improved fault tolerance, therefore we

further generalize this approach for a generic desired R redundant factor to offer an opportunity

to enhance the fault tolerance of our quorum-based cycle routing solution [Kleinheksel and

Somani (2015a)]. Equation 5.24 balances the enlarged quorum size k̂ solution against the known

R times the optimal solution. Equation 5.25 solves for k̂ in terms of known k.

O(P k̂2) = RM (5.24)

k̂ ≈
√
Rk (5.25)

Equation 5.25 defines a quorum size, k̂, for a given R in terms of the original optimal k

value. To express minimum k̂ in terms of just R redundancy and P nodes, we can revisit the

optimal cyclic quorum set size, Equation 5.6. Using the same structure we can put minimum

necessary redundant all-pairs count on the left side and the total quorum pair count on the right

(Eq. 5.26). Simplifying the like terms, we arrive at Equation 5.27 and finally after rebalancing

Equation 5.28.

R
P (P − 1)

2
≤ P k̂(k̂ − 1)

2
(5.26)

R(P − 1) ≤ k̂(k̂ − 1) (5.27)

P ≤ k̂(k̂ − 1)

R
+ 1 (5.28)

Although we are defining R redundant pairs, observe the definition of a cyclic quorum still

holds (Sect. 5.2). Definition 1 and Theorems 2, 3, and 4 go unchanged because we are still using

cyclic quorums. The only observable change is an increase in quorum size to accommodate that

there are more pairings required by definition now. To further emphasize this, consider the two



www.manaraa.com

60

examples in Figure 5.4 for R = 2 and P = 7. Figure 5.4 (a) forms all of the differences for

A = {1, 2, 3, 4} on the top and then performs the modulus P = 7 on the bottom. This is not a

valid difference set for R = 2 redundant cyclic quorum because d mod 7 = 3 and d mod 7 = 4

only occur once, when theorem 4 would lead us to conclude these differences must occur twice

in order to form R = 2 pairs. Figure 5.4 (b), however, is a valid difference set because the

differences for A = {1, 2, 3, 5} modulus P = 7 form all integers 0, . . . , (P − 1) twice.

To the best of our knowledge, no efficient algorithm is known to find quorums of minimum

size, particularly with the additional requirement that entity pairs appear a minimum R times

within the quorums set solution. Luk and Wong (1997) used a brute force search to find optimal

cyclic quorums for N = 4 . . . 111. Using our generalized result from Eq. 5.25, we too used a

brute force search beginning with the smallest possible quorum size for a given number of nodes

P and a given desired redundancy factor R (see Appendix B for the redundant cyclic quorum

listing).

The resulting redundant quorums were utilized in Chapter 7, as we analyzed and enhanced

the efficiency and fault tolerance of quorum-based cycle routing in optical networking.



www.manaraa.com

61

(a)

(b)

Figure 5.4: Defining a relaxed (P, k)-difference set for an R = 2 redundant cyclic quorum. For a

given set A = {a0, . . . , ak} and integer P , all integers 0, . . . , (P − 1) must be formed twice from

the differences modulus P of integer pairs from set A. Figure (a) shows an invalid difference

set corresponding to A = {1, 2, 3, 4} and P = 7 because integer differences modulus 7 formed

d mod 7 = 3 and d mod 7 = 4 only once. Whereas Figure (b) with A = {1, 2, 3, 5} and P = 7

is a valid difference set for an R = 2 redundant cyclic quorum because all integer differences

modulus 7 were formed twice, i.e., 0, . . . , 6 are all present twice.



www.manaraa.com

62

CHAPTER 6 ALL-PAIRS APPLICATIONS IN COMPUTATION

OPTIMIZATIONS

To evaluate the performance of our cyclic quorum set method, we modified an existing

all-pairs application [Koesterke et al. (2013)] to scale to larger datasets and at the same time

be able to utilize more resources. The algorithm implemented the distributed all-pairs problem

defined in Equation 4.6 using the cyclical quorum sets defined in Section 5.2.

6.1 Bioinformatics PCIT Application

The partial correlation coefficients combined with an information theory approach (PCIT)

algorithm was introduced by Reverter and Chan (2008). The algorithm can be used as compo-

nent to the work flow for gene co-expression network reconstruction and for helping to identify

novel biological regulators. The technique processes N genes (and candidate genes) by building

an O
(
N2
)

matrix and using a guilt-by-association heuristic to analyze gene pair partial correla-

tions to identify using purely data whether a gene expression correlation is or is not meaningful.

More background information on gene co-expression networks and the PCIT algorithm can be

found in Section 2.5.

6.2 Test Setup

Virtually all research fields have seen a dramatic increase in data collection and processing

over the past decade. The field of bioinformatics is no stranger to having to scale their algorithms

to larger datasets by utilizing more resources. There, as in many research fields, scientists are

turning to cloud systems to meet their needs [Chae et al. (2013, 2014)]. These cloud delivered

systems are continuing to advance and can provide graphical user interfaces, connecting to

existing cloud datasets, security, and providing tools capable of running in a cloud environment.



www.manaraa.com

63

Table 6.1: Input Datasets Utilized in PCIT Experiments

Type Rows Columns

*Cattle 27364 5

Simulated 33331 5

Simulated 39298 5

*Mice 45265 5

Simulated 51232 1893

*Rice 57194 1893

Simulated 63166 1893

Simulated 69133 1893

Simulated 75000 1893

Amazon’s AWS cloud is one of the most common providers. They can provide high perfor-

mance computing clusters for rent by-the-hour eliminating the hurdles of high upfront capital

costs and ongoing maintenance. For HPC applications like the PCIT algorithm or any other

all-pairs problem, they offer their latest generation of compute-optimized “C4” instances [Ama-

zon (2016b)]. These have Intel Xeon E5 v3 processors with the largest instance (“c4.8xlarge”)

having 36 virtual CPUs and 60GB of memory [Amazon (2016a)].

We conducted our application experiments using Cyence, an HPC system at Iowa State

University. Every node has dual Intel Xeon E5 8-core processors and 128GB of memory. Our

executions ranged from 16 to 512 cores (1 to 32 nodes). In order to better model how our

application would execute in a similar HPC environment to that of Amazon’s, we restricted

our application’s memory usage to only 60GB per node.

Three real and six simulated input datasets were used in our testing. Table 6.1 marks

the real datasets with an asterisk. Simulated datasets were generated for a particular number

of rows and columns using a technique published by Reverter and Chan (2008). Number of

input rows (N) is the primary determinate of the processing complexity of all-pairs algorithms,

hence our input sizes were varied with increasing number of gene (and gene candidate) rows.

The number of input columns for the simulated datasets were chosen to match that of similar

real input datasets. Input columns correspond to the number of test subject conditions, e.g.,

the number of cattle, mice, or rice test samples.



www.manaraa.com

64

The single node PCIT algorithm from Koesterke et al. (2013) was run with 16 OpenMP

threads on a node by itself. The quorum implementations ran with 4 to 32 nodes (64 to 512

cores) with one MPI process and 16 OpenMP threads per node. The number of HPC nodes was

varied to demonstrate interesting strengths and weaknesses in the choice of number of parallel

nodes selected. Common choices for number of parallel nodes are powers of 2, i.e., 4, 8, 16,

and 32 nodes. However, cyclic quorum sets based on Singer difference sets [Colbourn (2010)]

can have an advantage (more discussion on this in Section 6.4), so 7, 13, and 31 nodes are also

tested.

6.3 Results

For each pair of dataset input and number of HPC nodes, we executed 30 runs of the

application in order to establish confidence in the runtime measurements. There is a column

for every dataset input and a row for the number of nodes used. The memory used per node is

in Table 6.2 and the observed average execution runtimes with 95% confidence intervals is in

Table 6.3.

6.3.1 Memory usage performance

The single node instance in Table 6.2 is the PCIT algorithm from Koesterke et al. (2013) for

comparison. As additional nodes are used, our cyclic quorums implementation requires fewer

memory resources per node to execute the same dataset. This is because not all of the input,

intermediate, or result data are stored at a single node. Instead, the data is distributed in

a predictable way using the cyclic quorum design described in Section 5.2 on Page 50. This

resulted in up to an 80% reduction in memory requirements per node. This was a critical result

for our larger real and simulated input datasets where memory used per node ran into the upper

60GB limit for the single node tests and some of our parallel tests as well. These instances have

been marked with bold in Table 6.2.

While generally increasing the number of nodes will reduce the memory used, there are some

local minimums that initially may not be expected by a user of our cyclic quorums algorithm.

For example, choosing 7 nodes instead of 8 actually results in a lower memory usage (57% vs.



www.manaraa.com

65

T
ab

le
6.

2:
M

em
or

y
U

se
d

P
er

N
o
d

e
(G

B
)

#
N

o
d

e
s

*
2
7
3
6
4

3
3
3
3
1

3
9
2
9
8

*
4
5
2
6
5

5
1
2
3
2

*
5
7
1
9
4

6
3
1
6
6

6
9
1
3
3

7
5
0
0
0

1
25

.1
1
3

3
7.

25
7

51
.7

89
6
8
.7

0
8

8
8
.7

3
6

1
1
0
.4

9
5

1
3
4
.6

8
0

1
6
1
.2

3
3

1
8
9
.6

6
9

4
18

.8
3
1

2
7.

93
9

38
.8

37
51

.5
26

6
6
.7

2
5

8
3
.0

6
4

1
0
1
.2

2
5

1
2
1
.1

5
9

1
4
2
.5

0
6

7
10

.7
6
2

1
5.

96
7

22
.1

93
29

.4
45

38
.4

39
47

.8
12

58
.2

24
6
9
.6

5
1

8
1
.8

8
8

8
12

.5
5
5

1
8.

62
7

25
.8

93
34

.3
52

44
.7

24
55

.6
47

6
7
.7

8
2

8
1
.0

9
9

9
5
.3

5
7

1
3

7
.7

27
11

.4
63

15
.9

34
21

.1
40

27
.8

01
34

.5
54

42
.0

5
4

50
.2

8
2

5
9.

0
91

1
6

7
.8

48
11

.6
43

16
.1

85
21

.4
71

28
.2

24
35

.0
83

42
.6

9
8

51
.0

5
4

5
9.

9
96

3
1

4
.8

62
7
.2

13
10

.0
25

13
.3

02
17

.7
60

22
.0

35
26

.7
8
7

31
.9

9
4

3
7.

5
63

3
2

5
.4

95
8
.1

51
11

.3
31

15
.0

33
19

.9
74

24
.8

02
30

.1
5
6

36
.0

3
2

4
2.

3
16



www.manaraa.com

66

only 50% reduction), which is a bit counter intuitive upon first inspection. In the N = 63166

row test, this resulted in the 8-node execution exceeding the 60GB memory limit, while with

one fewer nodes, the 7-node test stayed under the limit. This can be explained by cyclic quorum

sets based on Singer difference sets [Colbourn (2010)] can have some advantages like requiring

fewer datasets (Di) to still guarantee the all-pairs property (Section 5.3). So 7, 13, and 31

nodes reduce memory usage per node by 57%, 69%, and 80% respectively, while if the number

of nodes were increased by a small amount to 8, 16, or 32 the reduction is slightly less at 50%,

68%, and 77%. More discussion on this topic is in Section 6.4.

6.3.2 Runtime execution performance

Similar to the analysis of the memory, in Table 6.3 the single node instance used the PCIT

algorithm from Koesterke et al. (2013). Our cyclic quorums implementation benefits from the

additional parallel processing nodes. The all-pairs computation work is equally distributed and

the resulting average runtimes on the same datasets decrease significantly. The average runtimes

observed over 30 executions are in Table 6.3 with their 95% confidence intervals. As described in

our test setup (Section 6.2), we used a generous 60GB memory limit that even current datasets

pushed up against (Table 6.2), and if trends continue, future datasets will push even further

beyond. Where this limit was exceeded we did not collect execution runtime data, except in

one single node instance which is marked with bold. Here the single node algorithm had to

revert to a lower memory alternative, and consequently, the runtime increased dramatically as

a trade off.

The speedup (or scalability) of our algorithm is calculated as how many times faster our

algorithm runs given additional processing nodes (P ) with respect to the optimized single

node algorithm, i.e., SpeedUp =
T imesingle

T imeparallel(P ) . Figure 6.1 shows the speedup curves for three

smaller datasets all of which fit within the available memory constraints. The curves are nearly

identical for the datasets, hence the increased execution speed is independent of the dataset and

can be attributed to our algorithm’s ability to distribute the data and all-pairs computation

work. The trend of the curves on the log-log scale is close to linear demonstrating the ability

to utilize additional resources to arrive at results in a shorter amount of time efficiently. The



www.manaraa.com

67

T
ab

le
6.

3:
A

ve
ra

ge
E

x
ec

u
ti

on
R

u
n
ti

m
es

(S
ec

on
d

s)

#
N

o
d

e
s

*
2
7
3
6
4

3
3
3
3
1

3
9
2
9
8

*
4
5
2
6
5

5
1
2
3
2

*
5
7
1
9
4

6
3
1
6
6

6
9
1
3
3

7
5
0
0
0

1
1
1
9.

1
±

2.
9

16
2
.5
±

0.
1

2
45

.5
±

0.
1

2
3
1
2
.5
±

0
.2

-
-

-
-

-

4
5
2
.1
±

0.
0

73
.3
±

0.
1

1
12

.0
±

0.
5

17
0.

6
±

0.
1

-
-

-
-

-

7
1
7.

9
±

0
.0

2
5
.5
±

0.
0

38
.2
±

0.
0

60
.5
±

0.
0

31
7.

5
±

0.
9

12
09

.8
±

2.
0

4
90

.8
±

2.
3

-
-

8
24

.8
±

0
.0

3
5.

3
±

0
.0

5
3.

2
±

0.
0

83
.1
±

0.
0

36
4.

2
±

1.
2

16
31

.4
±

2.
2

-
-

-

1
3

1
0.

1
±

0
.0

1
4
.4
±

0.
0

21
.3
±

0.
0

32
.1
±

0.
0

24
6.

3
±

2.
4

78
4.

8
±

1.
5

3
72

.8
±

2.
1

4
46

.1
±

1
.2

52
2.

8
±

2
.9

1
6

1
0
.6
±

0.
0

15
.2
±

0.
0

22
.5
±

0.
0

35
.1
±

0.
0

25
1.

2
±

2.
3

82
7.

0
±

2
.0

37
7.

9
±

2
.1

45
4.

2
±

1.
2

5
30

.5
±

2.
0

3
1

4
.6
±

0.
0

6.
4
±

0
.0

9.
9
±

0.
1

14
.7
±

0.
0

17
8.

6
±

1.
2

40
7.

8
±

2
.5

25
0.

1
±

1
.8

30
6.

4
±

1.
1

3
61

.1
±

1.
5

3
2

5
.8
±

0.
0

8.
3
±

0
.0

1
2.

2
±

0.
0

18
.9
±

0.
0

19
7.

9
±

1.
2

51
6.

4
±

1
.2

28
4.

6
±

0
.7

33
7.

4
±

2.
1

3
94

.6
±

2.
2



www.manaraa.com

68

Figure 6.1: Speedup of our cyclic quorum algorithm using (P ) parallel nodes when compared

to an optimized single node algorithm. This figure has near identical speedup curves for the

computation of three smaller datasets that all fit within the available memory. The log-log scale

shows that as additional node resources are added our algorithm scales to utilize the resources.

speedup is not ideally linear however, as seen by the speedup value falling slightly short of the

number of nodes used. As expected, this indicates there are some overheads when parallelizing

across multiple nodes that was not present in the optimized single node algorithm. Additionally,

the curves are not smooth with the increasing nodes used, i.e., speedup of P = 7, 13, and 31

exceeds that of P = 8, 16, and 32. This can be explained by cyclic quorum sets based on Singer

difference sets [Colbourn (2010)] can have some advantages like requiring fewer datasets (Di)

to guarantee the all-pairs property (Section 5.3), hence there are fewer datasets at each node

being paired with each other meaning less work to be performed. This is an interesting result

and creates the question of whether additional computation management could improve the

performance of quorum sets not based on Singer difference sets, which is the topic in Section

6.4.



www.manaraa.com

69

Figure 6.2: Speedup of our cyclic quorum algorithm using (P ) parallel nodes when compared

to an optimized single node algorithm. This figure has a speedup curve for a larger dataset

that would have exceeded the single node memory resources, requiring the use of an alternate

lower memory optimized algorithm. Here super-linear speedup is observed as our cyclic quorum

algorithm is able to distribute the problem and process the input within the memory constraints.

Without the distributed cyclic quorums set solution, the time to compute the ever increas-

ing dataset sizes is prohibitive. To further illustrate this point, Figure 6.2 shows the speedup

curve for the N = 45265 row dataset. The trend of the curve on the log-log scale is close to

linear, again demonstrating our ability to scale to arrive at results in a shorter amount of time

efficiently. However, unlike Figure 6.1, the speedup in Figure 6.2 is super-linear as seen by the

speedup value for some inputs being more than 5x the number of nodes used. This is a common

phenomenon where distributed parallel algorithms are able to more efficiently process a larger

problem than their single node equivalents. Meaning that when renting the processing resources

from the cloud or utilizing resources on a local HPC system, not only will our solution compute

the all-pairs results faster, it will also do so more cheaply by using as much as 5x fewer node

compute hours to complete the computation.



www.manaraa.com

70

Lastly, again the speedup curve in Figure 6.2 is not smooth just like that of Figure 6.1.

This is an interesting result highlighting some of the advantages of Singer difference sets. The

question of whether additional computation management could improve the performance of

quorum sets not based on Singer difference sets is addressed in the next section, Section 6.4.

6.4 Adding Computation Management Logic

In the prior section, Section 6.3, it was observed that our cyclic quorums algorithm scaled

well using less memory per node and achieving linear and at times super-linear speedups.

However, the speedup when additional nodes were added was not as smooth of a curve as

anticipated in Figures 6.1 and 6.2 and similarly observed in Table 6.3 with executions P =

8, 16, and 32 under performing expectations.

In this section, we discuss how the size of the cyclic quorum impacts these results, as

well as providing additional computation management logic to compliment the implicit data

management techniques that cyclic quorum sets provides. Lastly, we implement and test our

management logic.

6.4.1 Impact of cyclic quorum size

Common choices for number of parallel nodes are powers of 2, i.e., 4, 8, 16, and 32 nodes.

These choices were shown to not perform as well as lesser obvious choices of 7, 13, and 31

nodes. And in the prior section, Section 6.3, we attributed this to the advantages of cyclic

quorum sets based on Singer difference sets [Colbourn (2010)]. Here, we expand more on this

topic by looking more closely at the size of the optimal cyclic quorum sets used for processes

P = 4, . . . , 111 from Luk and Wong (1997) (see Appendix A for a reproduced and verified cyclic

quorum listing).

Table 6.4 summarizes the characteristics of our test parameter P ’s impact on the all-pairs

computations performed, i.e., without additional management logic, redundant work will be

performed. Column 1 is the number of P nodes. |Si| = k comes from Equations 5.6 and 5.5.

There is a minimum size that the cyclic quorum can have, while still being valid and therefore

having the all-pairs property (Section 5.3). We verified that the optimal cyclic quorums found



www.manaraa.com

71

from Luk and Wong (1997) were in fact the minimum and column 2 contains these quorum

sizes. One of the attractive features is the slow quorum growth rate, O
(√

P
)

, compared to

number of P processes. This means that the size of the quorum set, i.e., |Si| = k, will grow far

slower than the increase in number of P nodes being used.

The distributed all-pairs problem was defined in Section 4.2 on Page 45. Additionally,

Equation 4.6 described the required global pairing of all Di for i ∈ 0, . . . , P − 1. What this

amounts to is
(
P
2

)
= P (P−1))

2 datasets paired with each other and then the same P datasets

paired with themselves for a total ideal pairing performed being:

P (P − 1)

2
+ P =

P (P + 1)

2
(6.1)

This value is calculated for each P -nodes in Table 6.4 and put in column 3, Ideal Pairs. The

Unmanaged Pairs column is the number of pairs computed in our cyclic quorums algorithm

without any additional management logic. Each node has k datasets available in memory, where

the specific datasets available are defined by Equation 5.8. They can perform
(
k
2

)
= k(k−1)

2

pairings and 1 additional pairing of dataset D0+i with itself. When this is performed across all

nodes the total unmanaged pairings is:

P

(
k (k − 1)

2
+ 1

)
(6.2)

This value is calculated for each P -nodes in Table 6.4 and put in column 4, Unmanaged Pairs.

The Redundant Pairs, column 5, of Table 6.4 is the difference between the ideal number of

global pairs computed in the distributed system and the number of pairs computed globally

when the cyclic quorum set algorithm goes unmanaged. The Redundant Percentage is the ratio

of the unmanaged pairs computed that is redundant. On average over P = 4, . . . , 111 the

amount of redundant pairs is not insignificant at 19.7%. This really motivates the need for

adding computation management logic to our cyclic quorums set solution.

When looking at Table 6.4, there are several entries that have 0 redundant pairs. These

instances are where the cyclic quorum is formed from a Singer difference set. The distributed



www.manaraa.com

72

T
ab

le
6
.4

:
R

ed
u

n
d

an
t

W
or

k
P

er
fo

rm
ed

W
h

en
Q

u
or

u
m

P
ai

rs
U

n
m

a
n

a
ge

d

#
N

o
d

e
s
|S

i|
=

k
Id

e
a
l

P
a
ir

s
U

n
m

a
n

a
g
e
d

P
a
ir

s
R

e
d

u
n

d
a
n
t

P
a
ir

s
R

e
d

u
n

d
a
n
t

P
e
rc

e
n
ta

g
e

4
3

10
16

6
3
7.

5
%

7
3

28
28

0
0.

0
%

8
4

36
56

20
3
5.

7
%

1
3

4
91

91
0

0.
0
%

1
6

5
13

6
17

6
40

2
2.

7
%

3
1

6
49

6
49

6
0

0.
0
%

3
2

7
52

8
70

4
17

6
25

.0
%

A
ve

ra
g
e

R
ed

u
n

d
an

t
P

er
ce

n
ta

ge
fo

r
#

N
o
d

es
=

4
,.
..
,1

11
1
9
.7

%



www.manaraa.com

73

global pairings across all of the processing nodes in these instances perfectly cover the necessary

pairs without any overlap. An example of a 7-node cyclic quorum covering all pairs can be seen

in Figure 5.3 on Page 57. Singer difference sets for P < 100 are P = 7, 13, 21, 31, 57, 73, and 91.

6.4.2 Computation management logic

The previous section identified the issue as distributed nodes performing redundant work

and provided a way to account for how much wasted work actually exists in the solution. Now

the challenge is to locate the source and fix it.

6.4.2.1 Identifying redundancy

Observe that in order to perform redundant all-pairs work two or more nodes must share

(intersect) two or more of the same datasets. Section 5.3 defined the all-pairs property for

quorums and has the corresponding proof that cyclic quorums have the all-pairs property.

Notice the key to forming pairs is rooted in the difference set for the cyclic quorum. It is this

difference set that defines which datasets are in each quorum, hence we return to Definition 1

(Relaxed (P, k)-difference set).

In Figure 6.3, every d 6= 0 modulus P = 4 is present, which is required for A = {1, 2, 3} to

be a difference set (and cyclic quorum). The key observation is that there are instances that

differences modulus P occur more than once. This is the source of all of the redundant work for

P = 4. To see why reoccurring differences lead to duplicate pairs, consider for some difference

set A:

ai − aj mod P = ax − ay mod P (6.3)

Using the definition of cyclic quorums these differences would correspond to pairs for some

quorum Sl and Sm:

(ai + l, aj + l) mod P (6.4)

(ax +m, ay +m) mod P (6.5)



www.manaraa.com

74

Figure 6.3: A difference set example with 4 processes. This figure with A = {1, 2, 3} and P = 4

is a valid relaxed difference set because all integer differences modulus 4 are formed, i.e., 0, . . . , 3

all occur one or more times.

Knowing that both pairs correspond to equal differences modulus P, then we can add k modulus

P to the first difference to obtain the second difference:

(ai + k)− (aj + k)mod P = ax − ay mod P (6.6)

This gives way to creating a new pair equivalence

(ai + k + l, aj + k + l) mod P = (ax +m, ay +m) mod P (6.7)

And now we can define a new quorum index l̂ = l + k mod P .

(
ai + l̂, aj + l̂

)
mod P = (ax +m, ay +m) mod P (6.8)

The result is two quorums l̂ and m with a redundant pair all because there was a reoccurring

difference in their shared difference set definition A.

6.4.2.2 Removing the redundancy

With the source of the redundancy identified, ideally we would just remove it. However, we

cannot change the difference set to eliminate the redundancy without violating the definition.

Instead, we take the simple approach above to identify any redundancy. When one is found,

we must decide how to handle it differently than the other unique differences.



www.manaraa.com

75

Figure 6.4: A cyclic quorum set example with 4 processes to illustrate the cause and solution to

redundant work. This figure has the corresponding cyclic quorum set on the left and the possible

all-pairs formed for each on the right. The pairs and quorum are colored with useful work

performed, while the uncolored pairs would be redundant work and should not be performed.

Algorithm 16 Enumerating pairs for each quorum

1: Given: Array A

2: for x← 0 to length(A)− 2 do

3: for y ← x+ 1 to length(A)− 1 do

4: Pair
(
Dax+i, Day+i

)
5: end for

6: end for

To get an idea what this different handling would look like consider Figure 6.4. All of the

cyclic quorums are listed on the left for the difference set shown in Figure 6.3. On the right the(
k
2

)
pairs for each quorum are enumerated using Algorithm 16.

This enumeration pattern uses Equation 5.8 and gives a consistent order to forming the

pairs for all quorums Si, i ∈ 0, . . . , P − 1. The first pair for each quorum is based on differences

a0 − a1 and a1 − a0. These differences have not been computed yet, thus their quorum dataset

pairs are not redundant work, so we color them with the corresponding quorums’ color in Figure

6.4. This is important to observe because the differences

a0 − a1 mod 4 = 1− 2mod 4 = 3, and (6.9)

a1 − a0 mod 4 = 2− 1mod 4 = 1 (6.10)

occur multiple times in Figure 6.3. The repetition of differences was identified as being the

source of redundant work. However, the work is not redundant yet, so the work must be

performed.



www.manaraa.com

76

Algorithm 17 Management Logic(A,P ,i)

1: DC [d]← False, d ∈ 0, . . . , P − 1

2: for x← 0 to length(A)− 2 do

3: for y ← x+ 1 to length(A)− 1 do

4: dxy ← (A [x]−A [y]) modulus P

5: dyx ← (A [y]−A [x]) modulus P

6: if DC [dxy] 6= True and

DC [dyx] 6= True then

7: DC [dxy]← True

8: DC [dyx]← True

9: if dxy 6= dyx then

10: Compute Pair
(
DA[x]+i, DA[y]+i

)
11: else if i < P

2 then

12: Compute Pair
(
DA[x]+i, DA[y]+i

)
13: end if

14: end if

15: end for

16: end for

The second pair for each quorum is based on differences a0 − a2 and a2 − a0. These pairs

have not been computed yet either, but on closer inspection the differences

a0 − a2 mod 4 = 1− 3mod 4 = 2, and (6.11)

a2 − a0 mod 4 = 3− 1mod 4 = 2 (6.12)

are actually the same difference. This redundancy with itself occurs when P mod 2 = 0, i.e.,

the number of nodes is even. If all nodes were to compute this pair, redundant work will occur.

Rather, we arbitrarily decide that the first half of the nodes corresponding with quorums

Si, 0 ≤ i < P
2 should do the work, so we color them with the corresponding quorums’ color.

We leave the would be redundant pairs uncolored to indicate that they are not computed.

The last quorum dataset pair is based on differences:

a1 − a2 mod 4 = 2− 3mod 4 = 3, and (6.13)

a2 − a1 mod 4 = 3− 2mod 4 = 1 (6.14)

However, these differences have already been computed and hence are redundant and are not

colored in Figure 6.4.



www.manaraa.com

77

We took a simple approach described above and in Figure 6.4 to prevent redundancy at the

time of computation, since it cannot be eliminated from the difference set. This computation

management logic is more formally stated by Algorithm 17. Firstly, computing differences

multiple times is the source of redundancy. Line 1 is an array of booleans to track which

differences have been computed and which have not. Lines 2 and 3 enumerate all
(
k
2

)
difference

pairs. The prevention of redundancy logic is primarily in the if statement on Line 6, which

verifies whether a difference has been computed or not. For those differences that have not

been computed, most will go on to compute the quorum dataset pairings on Line 10. However,

there is a special case for when differences form redundancies with themselves, i.e., dxy = dyx.

This only occurs when the number of P nodes is even; and in this case, only half of the nodes

need to compute their quorum dataset pairs (Line 11).

6.4.3 Impacts of managing quorum set all-pairs computations

Table 6.4 on Page 72 illustrated that there was room for substantial improvement in all-pairs

computations using cyclic quorum sets not based on Singer difference sets. The table suggests

on average 19.7% of the work would be redundant if something were not done to avoid it.

We could implement a central manager that assigns work and arbitrates which node per-

forms which computation pairs, but that adds another layer of complexity and overhead, poten-

tially negating any benefits. A decentralized communication approach without a leader would

appear to be a good fit, considering those applications are what quorum sets are regularly

used for. However, that approach would also add an unnecessary layer of complexity and some

overheads.

Rather, Algorithm 17 can be implemented in a distributed system without any commu-

nication requirement. All decisions are made locally and with very little overhead other than

keeping track of the Differences Computed (DC) array.

To test out this computation management logic, we used the same application and same test

setup as described in Sections 6.1 and 6.2 on Page 62. Once again we restricted our application’s

memory usage to only 60GB per node to model how our application would execute in a similar



www.manaraa.com

78

cloud HPC enivironment to that of Amazon’s “c4.8xlarge” instance cluster [Amazon (2016a)].

The three real and six simulated input datasets described in Table 6.1 were used again as well.

We modified our prior cyclic quorum to add the computation management logic. For each

pair of dataset input and number of HPC nodes, we executed 30 runs of the application in

order to establish confidence in the runtime measurements. There is a column for every dataset

input and a row for the number of nodes used. The memory used per node is in Table 6.5 and

the observed average execution runtimes with 95% confidence intervals is in Table 6.6.

6.4.3.1 Memory usage performance

The single node instance in Table 6.5 is the PCIT algorithm from Koesterke et al. (2013)

for comparison. Our cyclic quorums implementation with the new management logic has a

substantially similar memory footprint to the implementation without. This was expected con-

sidering that the redundancies were not able to be removed from the difference sets, i.e., the

data continues to be distributed in a predictable way using the cyclic quorum design described

in Section 5.2 on Page 50. Also, we only added a small amount of overhead to keep track of

which differences had, and which ones had not yet, been computed.

In Table 6.5, we continue to see that in general as additional nodes are used, fewer memory

resources per node are required to execute the same dataset. This again results in up to an

80% reduction in memory requirements per node. This was a critical result for our larger real

and simulated input datasets where memory used per node ran into the upper 60GB limit for

the single node tests and some of our parallel tests as well. These instances have been marked

with bold.

The advantages of using Singer difference sets [Colbourn (2010)] are still present in the

memory usage data for the same reason. 7, 13, and 31 nodes reduce memory usage per node

by 57%, 69%, and 80%, respectively, while if the number of nodes were increased by a small

amount to 8, 16, or 32 the reduction is slightly less at 50%, 68%, and 77%. Generally increasing

the number of nodes will reduce the memory used. However, these results illustrate that there

are some local minimums that initially may not be expected by a user of our cyclic quorums

algorithm.



www.manaraa.com

79

T
ab

le
6.

5:
M

an
ag

ed
-

M
em

or
y

U
se

d
P

er
N

o
d

e
(G

B
)

#
N

o
d

e
s

*
2
7
3
6
4

3
3
3
3
1

3
9
2
9
8

*
4
5
2
6
5

5
1
2
3
2

*
5
7
1
9
4

6
3
1
6
6

6
9
1
3
3

7
5
0
0
0

1
25

.1
1
3

3
7.

25
7

51
.7

89
6
8
.7

0
8

8
8
.7

3
6

1
1
0
.4

9
5

1
3
4
.6

8
0

1
6
1
.2

3
3

1
8
9
.6

6
9

4
18

.8
3
1

2
7.

93
8

38
.8

37
51

.5
26

6
6
.7

2
5

8
3
.0

6
5

1
0
1
.2

2
2

1
2
1
.1

5
9

1
4
2
.5

0
6

7
10

.7
6
2

1
5.

96
7

22
.1

93
29

.4
45

38
.4

39
47

.8
12

58
.2

26
6
9
.6

5
1

8
1
.8

8
6

8
12

.5
5
5

1
8.

62
7

25
.8

93
34

.3
52

44
.7

24
55

.6
47

6
7
.7

8
0

8
1
.0

9
9

9
5
.3

5
7

1
3

7
.7

27
11

.4
63

15
.9

34
21

.1
40

27
.8

01
34

.5
54

42
.0

5
4

50
.2

8
2

5
9.

0
91

1
6

7
.8

48
11

.6
43

16
.1

85
21

.4
71

28
.2

24
35

.0
83

42
.6

9
8

51
.0

5
4

5
9.

9
96

3
1

4
.8

62
7
.2

13
10

.0
25

13
.3

02
17

.7
60

22
.0

35
26

.7
8
7

31
.9

9
4

3
7.

5
66

3
2

5
.4

95
8
.1

51
11

.3
31

15
.0

33
19

.9
74

24
.8

02
30

.1
5
6

36
.0

3
2

4
2.

3
16



www.manaraa.com

80

T
ab

le
6.

6:
M

an
ag

ed
-

A
ve

ra
ge

E
x
ec

u
ti

on
R

u
n
ti

m
es

(S
ec

o
n

d
s)

#
N

o
d

e
s

*
2
7
3
6
4

3
3
3
3
1

3
9
2
9
8

*
4
5
2
6
5

5
1
2
3
2

*
5
7
1
9
4

6
3
1
6
6

6
9
1
3
3

7
5
0
0
0

1
1
1
9.

1
±

2.
9

16
2
.5
±

0.
1

2
45

.5
±

0.
1

2
3
1
2
.5
±

0
.2

-
-

-
-

-

4
3
8
.4
±

0.
1

54
.0
±

0.
1

82
.4
±

0.
2

12
4.

0
±

0.
0

-
-

-
-

-

7
1
8.

0
±

0
.0

2
5
.4
±

0.
1

38
.3
±

0.
1

60
.4
±

0.
1

31
7.

6
±

0.
9

12
13

.4
±

1.
6

4
91

.9
±

2.
3

-
-

8
18

.0
±

0
.0

2
5.

7
±

0
.1

3
8.

6
±

0.
1

57
.9
±

0.
1

34
1.

5
±

1.
0

11
75

.0
±

2.
8

-
-

-

1
3

1
0.

1
±

0
.0

1
4
.4
±

0.
0

21
.5
±

0.
1

32
.3
±

0.
0

24
4.

1
±

1.
8

78
8.

3
±

1.
9

3
71

.9
±

2.
2

4
46

.5
±

1
.3

51
9.

4
±

2
.5

1
6

9.
0
±

0
.0

1
2
.9
±

0.
0

19
.0
±

0.
1

29
.0
±

0.
0

24
4.

5
±

2.
1

71
1.

2
±

2.
3

3
64

.3
±

1.
8

4
39

.3
±

1
.2

50
9.

6
±

2
.0

3
1

4.
8
±

0
.0

6
.6
±

0.
0

10
.0
±

0.
0

14
.9
±

0.
1

17
8.

8
±

1.
3

41
5.

4
±

1.
8

2
49

.9
±

2.
2

3
07

.1
±

1
.1

36
1.

4
±

1
.2

3
2

4.
8
±

0
.0

6
.9
±

0.
0

10
.1
±

0.
0

15
.4
±

0.
0

19
3.

8
±

1.
1

43
0.

8
±

1.
2

2
77

.8
±

1.
2

3
28

.4
±

1
.5

38
1.

4
±

1
.7



www.manaraa.com

81

6.4.3.2 Runtime execution performance

The average runtimes observed over 30 executions are in Table 6.6 with their 95% confidence

intervals. As described in our test setup (Section 6.2), we used a generous 60GB memory limit

that even current datasets pushed up against (Table 6.5). Where this limit was exceeded we

did not collect execution runtime data, except in one single node instance which is marked

with bold. Here, the single node algorithm had to revert to a lower memory alternative and

consequently the runtime increased dramatically as a trade off.

Figure 6.5 is a comparison of speedup between our unmanaged cyclic quorum set imple-

mentation of the PCIT algorithm from Section 6.3 and a modified version that has additional

computation management logic. The unmanaged implementation is denoted with a “U” and

managed implementation with an “M”. Speedup curves for two datasets are shown in the figure.

A smaller N = 39298 rows dataset which fits within the available memory constraints, and a

larger N = 45265 rows dataset which exceeded the memory constraints of a single node.

The trend of the N = 39298 curves on the log-log scale are close to linear demonstrating

both implementations’ abilities to scale with increasing node resources. The managed cyclic

quorum implementation’s speedup was up to 27% faster for this input dataset than without

the management logic. However for Singer difference sets [Colbourn (2010)], which require

fewer datasets (Di) to guarantee the all-pairs property (Section 5.3), our cyclic quorum imple-

mentation without management was already efficient without any redundant work. When the

management logic was added, the speedup decreased by up to 1% for this input dataset due to

the overheads introduced.

It is worth noting that the managed “M-39298” and “M-*45265” curves are considerably

more smooth with increasing nodes than their unmanaged curve partners. This is the impact

of being able to apply the computation management logic to prevent redundant work. Every

additional node is now contributing to complete useful work without any redundant work being

performed. The unmanaged implementation is not as smooth because some choices of P nodes

result in redundant work being performed, hence taking longer to complete decreasing the

observed speedup.



www.manaraa.com

82

Figure 6.5: Comparing the speedup of our unmanaged cyclic quorum algorithm with that of our

algorithm with additional computation management logic (U vs. M). Both were executed using

(P ) parallel nodes with speedups in reference to an optimized single node algorithm. Two

input datasets are compared, one with N = 39298 rows which fit within available memory,

and another with N = 45265 rows which exceeds a single node’s memory resources, requiring

the use of an alternate lower memory optimized algorithm. For non-Singer difference sets, the

managed all-pairs computations were up to 30% faster than without the management logic.

When P corresponded to a Singer difference set, the overhead of the management was typically

less than 1%, which put the unmanaged speedup slightly ahead.

Lastly, the speedup curves corresponding to the N = 45265 dataset in Figure 6.5, and

the runtime data in Table 6.6, work toward illustrating our distributed cyclic quorums set

solution enables the scaling to larger dataset sizes that previously may have been time and

resource prohibitive. The trend of the curves on the log-log scale are close to linear, again

demonstrating both implementations’ abilities to scale to arrive at results in a shorter amount

of time efficiently. However unlike the N = 39298 curves, the speedup is super-linear as seen

by the speedup value for some inputs being more than 5x the number of nodes used. When

renting the processing resources from the cloud or utilizing resources on a local HPC system,

this means not only will our solution compute the all-pairs for larger input datasets results



www.manaraa.com

83

faster, it will also do so more cheaply by using as much as 5x fewer node compute hours to

complete the computation.



www.manaraa.com

84

CHAPTER 7 ALL-PAIRS APPLICATIONS IN FAULT TOLERANT

OPTICAL COMMUNICATION OPTIMIZATIONS

Chapter 3 has a background on optical network operations and architectures. It included

recent work where the same cyclic quorums used in our computation application (Chapter 6)

were shown by Somani and Lastine (2014) to efficiently support arbitrary point-to-point and

multi-point communication for cycle-based routing in optical networks.

Optical networks are highly depended upon too. The fault tolerance aspect of these route

designs are important (Sect. 3.3). In this chapter, we analyze the fault tolerance of optical

networks when cyclic quorum sets are used as the basis for cycle routing. Here we utilize the

properties of cyclic quorum sets to deliver resource efficient routing solutions, while maintaining

fault tolerance in the network.

7.1 Fault Model

The fault model assumed for our work is the link (edge) failure. While a simple model, it

does cover most real single fault scenarios.

The most direct fault to consider is the optical link fault. This occurs when a link is broken,

like planned maintenance or the accidental severing during land excavation. Modeling link faults

as a single edge failure is straightforward.

Each modeled node needs a pair of transmitters and receivers for each occurrence in a cycle.

These pairs of devices can fail too. Short of a natural disaster, pairs will likely fail independently

of one another. When a transmitter/receiver pair fails within a modeled node, the affect on the

global network is similar to that link failing. Modeling as a single edge failure, while not an

exact fault mapping, is an appropriate abstraction.

Cycle-based routing can protect against faults of this nature [Lastine et al. (2012); Somani

et al. (2011)]. Commonly a paired cycle implementation is used to address this. When a link fails,



www.manaraa.com

85

Figure 7.1: Example route fault tolerance using light-trails

both cycles break. In the Figure 7.1 example, hub node 3 would no longer have a downstream

edge to node 4; however, upstream communication can be used to still reach node 4.

7.2 Paired Cycle Fault Simulation

Maintaining the ability to serve all dynamic point-to-point traffic requests despite fault is

important. We examined the fault tolerance of the NSFNET, ARPANET, American backbone,

Chinese backbone networks (Fig. 7.2). For each of these four networks, we created 1000 random

numbering schemes for the nodes and found cycles to support the optimal cyclical quorums

given in Luk and Wong (1997) (see Appendix A for a reproduced and verified cyclic quorum

listing).

To model the fault, we simulate the failure of each edge, (ei, ej) ∈ E, in the network model,

G = (V,E). We then examine the network’s ability to serve all potential point-to-point requests

by counting pairs of nodes that would be able to communicate and conversely those pairs that

are unable to communicate. In the non-fault case, all nodes can unidirectionally communicate

with all other nodes for a total of |V | (|V | − 1) pairs.

The results in Table 7.1 show acceptable fault tolerance performance. Out of the 1000 tests

per network and simulation of the failure of each edge in the networks, the mean number of

missing communication pairs per edge failure case was less than 3 (95% CI) for all networks.

Therefore, any link fault in the network will typically be recoverable and few point-to-point

connections will experience connection loss when using quorums set-based cycle routing.



www.manaraa.com

86

(a)

(b)

Figure 7.2: Networks used for simulations: Figure (a) NSFNET, 14-Node/22-Link, Figure (b)

ARPANET, 20-Node/31-Link, Figure (c) American Backbone [Tang et al. (2011)], 24-Node/43-

Link, and Figure (d) Chinese Backbone [Tang et al. (2011)], 54-Node/103-Link.



www.manaraa.com

87

(c)

(d)

Figure 7.2: (Continued)

Networks used for simulations: Figure (a) NSFNET, 14-Node/22-Link, Figure (b)

ARPANET, 20-Node/31-Link, Figure (c) American Backbone [Tang et al. (2011)],

24-Node/43-Link, and Figure (d) Chinese Backbone [Tang et al. (2011)], 54-Node/103-Link.



www.manaraa.com

88

Table 7.1: Paired quorum cycle fault simulation results

Total Missing Pairs Fault

Network Nodes Pairs High Mean (95% CI) Low Coverage (%)

NSFNET 14 182 12 0.93644 ± 0.02070 0 99.485

ARPANET 20 380 16 0.76051 ± 0.01715 0 99.800

American 24 552 26 2.05273 ± 0.02812 0 99.628

Chinese 54 2862 56 2.77809 ± 0.02400 0 99.903

To calculate fault coverage in this scenario, we calculated the mean connected pairs divided

by the total pairs.

1− MeanMissing Pairs

Total Pairs
(7.1)

The results of our simulation showed that greater than 99% average fault coverage can be

expected.

7.3 Improving Fault Tolerance

Many of the simulated networks typically performed well, but ideally we would like to see

the fewer missing pairs per fault case. A reduction in the highest missing pairs observed is also

important.

7.3.1 Additional cycle fault protection

Recall from Figure 3.3 on Page 40 that hub nodes in light-trail cycles have their optical

shutters in the off state. When a fault occurs like in Figure 7.1, it is possible that the hub node

is 0 and the optical shutters could prevent a necessary communication path between 3 and 4.

We experimented with adding an additional pair of cycles to form quad cycles. The pair has

its hub node directly across from the original pair’s hub node, i.e., at position
⌊
CycleLength

2

⌋
.

In the Figure 7.3 example, hub nodes 0 (inner blue light-trail) and 3 (outer red light-trail) are

across from one another. Node 3 still does not have a downstream edge to node 4 on either the

inner or outer cycle, but there does exist an upstream path on the outer cycle to node 4.



www.manaraa.com

89

Figure 7.3: Quad light-trails to provide additional cycle fault protection

Table 7.2: Quad quorum cycle fault simulation results

Total Missing Pairs Fault

Network Nodes Pairs High Mean (95% CI) Low Coverage (%)

NSFNET 14 182 6 0.09130 ± 0.00574 0 99.950

ARPANET 20 380 6 0.08710 ± 0.00496 0 99.977

American 24 552 12 0.28661 ± 0.00833 0 99.948

Chinese 54 2862 20 0.52939 ± 0.00768 0 99.982

The results in Table 7.2 show that most of the networks had the mean number of missing

pairs improved by an order of magnitude (95% CI). Any edge fault in the quad cycle network

will typically be recoverable and fewer point-to-point connections will experience connection

loss than with only the paired cycles. This translates into higher fault coverage values as well.

Similarly, the edge faults that generated the highest missing pairs observed in the simulated

networks decreased by 50% or more when the additional pair of cycles was added.

Adding the additional pairs of cycles and still having missing communication pairs may have

been a bit surprising. While the additional cycles significantly helped in fault reductions, the

underlying missing pairs come from the intermediate nodes common to both cycles. Depending

on the failing edge, these nodes may not have a downstream or upstream path on any of the

cycles to nodes on the opposite half of the cycle.



www.manaraa.com

90

7.3.2 Modifying the cycle routing algorithm

Rather than addressing the missing point-to-point communication pairs with additional

cycles, we could try to address the underlying cause of the missing pairs by changing the cycles

themselves. Here, we briefly outline additional algorithm steps that could be added to the

optical network cycle routing algorithm, ECBRA [Somani et al. (2011)].

In Section 3.4.1, every point-to-point request was supported by at least one quorum cycle.

Being opportunistic, even if one cycle is experiencing a fault, there may be another quorum

cycle that also is supporting that point-to-point request. Hence, quantifying missing pairs and

attempting to compensate should only occur once all cycles for a graph’s quorums set are found.

To enumerate the missing pairs, simulate the failure of each edge and examine the network’s

ability to serve all potential point-to-point requests by counting pairs of nodes that would be

able to communicate and conversely those pairs that are unable to communicate. Given results

in Section 7.2 the mean number of missing pairs is expected to be less than 3 per fault edge

(95% CI). Form a Missing-Pair tuple t =< {es, ed}, (ei, ej) >, where es is the source and ed is

the destination of the missing communications pair and (ei, ej) is the edge whose failure was

being simulated.

Every pair missing can be isolated back to a cycle responsible for the pair (Sect. 3.4.1). For

each tuple t, remove the faulty edge (ei, ej) in the responsible cycle for pair {es, ed}. To complete

the cycle, find the shortest path between the two disconnected nodes, such that cycle edges are

not reused and avoiding the use of (ei, ej). Once all Missing-Pair tuples have been processed,

repeat the enumeration and removal of missing pairs once again. Repetition is required to

confirm that in the process of addressing one Missing-Pair tuple that another new missing pair

was not added.

There is a possibility that a cycle may have to use edge (ei, ej). An example would be a

node with only two edges and the node being a member of the quorum for that cycle. This is

a known limitation and is a challenge in general for establishing appropriate fault tolerance for

communications to/from this node, as well as, through this node serving others. This limitation

is discussed further in Somani et al. (2011).



www.manaraa.com

91

7.3.3 Redundant cyclic quorums sets

In Section 7.2, ECBRA was used to route each of the quorums-based cycles. It was shown

that the quorums set approach provided fault tolerance and Lastine (2014) showed that this

technique required far fewer links to accomplish the routing of all-to-all traffic, when compared

to using point-to-point connections.

As an unintended benefit, some quorums sets resulted in node pairs occurring in more than

one quorums-based cycle. It was these occurrences of node pairs multiple times that improved

the fault tolerance performance. This also motivated us to examine whether redundant node

pairs could be generated intentionally as described in Section 5.4.

Predictably redundant pairs can improve the dependability of the optical network, by guar-

anteeing even if a cycle failed, all node pairs for point-to-point and multi-point communications

could still be present in a second cycle within the network. Alternatively, this could be used to

eliminate the paired cycle implementations and use only a single cycle, significantly reducing the

required amount of network resources while still maintaining a similar level of fault-tolerance.

Kleinheksel and Somani (2015c,a) examined both of these approaches and the results are pre-

sented in Sections 7.4 and 7.5.

7.4 Redundant Cyclic Quorums Set - Paired Cycle Network Analysis

We begin by examining our proposed expansion of redundant quorums by comparing apples-

to-apples using the paired cycle routing in prior art. We used four common networks (Fig. 7.2

on Page 86) and an implementation of the ECBRA heuristic [Somani et al. (2011)] to perform

the cycle routing.

ECBRA is sensitive to node and edge numbering that a total of 100 variations on the inputs

were considered, each being a one-to-one mapping with the respective network. For simulation

of prior art, we used the N = 4, . . . , 111 optimal cyclic quorums from Luk and Wong (1997) (see

Appendix A for a reproduced and verified cyclic quorum listing). Redundant cyclic quorums

for R = 2 and R = 3 were found using the techniques described in Section 5.4 (see Appendix B

for the redundant cyclic quorum listing).



www.manaraa.com

92

Table 7.3: Mean links (95% CI) used by paired cycles based on redundant quorums sets

Network R = 1 R = 2 R = 3

NSFNET 249.32 ± 1.37 270.82 ± 1.20 290.10 ± 1.49

ARPANET 511.90 ± 1.87 539.26 ± 1.53 589.50 ± 1.92

American 641.38 ± 2.10 720.06 ± 1.96 753.72 ± 1.53

Chinese 2673.30 ± 7.11 3054.64 ± 6.99 3271.40 ± 5.98

7.4.1 Fault-free operational analysis

It is expected that a majority of the time the optical network will be operating without

faults. It is important that the resource utilization during this period be analyzed.

The metric we use to measure resource utilization is the number of links used in a solution.

Comparing network-to-network is not particularly insightful, but comparing multiple solutions

for a particular network is. The more links that a set of quorum cycles use, the fewer (wave-

length) resources that can be assigned to each link. Additionally each logical link represents a

required physical transmitter and receiver, hence capital costs.

Table 7.3 shows that applying redundancy within the quorums and using paired cycles will

lead to an increase in mean network links used (95% confidence intervals). R = 1, column

two, is the standard, no redundant pairs, implementation seen in Somani and Lastine (2014);

Kleinheksel and Somani (2015b). R = 2 and R = 3 have twice and three times redundant pairs

present in their quorum solutions, respectively. Despite having that added redundancy, the

resource usage, columns 3 and 4, only increased 5.34-14.26% and 15.16-22.37%, respectively,

across the networks.

This resource usage result shows that applying our redundant quorums set technique to

paired cycle solutions available today will not pose too significant of a resource burden. Next,

we consider the fault case for paired cycles using our redundant quorum cycle solution and

show the increase in resources is being utilized to improve fault recoveries without any optical

cycle reconfigurations.



www.manaraa.com

93

7.4.2 Fault tolerance operational analysis

Optical networks are highly depended upon. The fault-tolerance aspect of this route design

is critical. Maintaining the ability to serve all dynamic point-to-point traffic requests despite

faults is important.

We assume fiber link failure(s) as described in Section 7.1. Modeling as a single edge failure,

while not an exact fault mapping, is an appropriate abstraction.

7.4.2.1 Single fault case

To model the fault, we simulate the failure of each used edge, (ei, ej) ∈ E, in the network

model, G = (V,E). It is possible for some networks and their corresponding cycle routes to not

utilize one or more network links. The edges not used in a particular solution are not considered

in our simulation because if they were included, they would bias the results with zero missing

pairs data points.

We then examine the network’s ability to serve all potential point-to-point requests by

counting pairs of nodes that would be able to communicate and conversely those pairs that are

unable to communicate. The results are then reported as fault coverage, i.e., total pairs able

to communicate as a percentage of total point-to-point pairs. 100% would be perfect coverage,

whereas 0% would be no fault coverage at all.

Our simulation results showed our redundant quorum-based cycle technique had 99.85 -

99.98% and 99.95 - 99.99% percent mean fault coverage, R = 2 and R = 3 respectively, in

the four networks tested. In Table 7.4, we compare the state-of-art paired cycle approach with

our redundant technique also with paired cycles. With single edge failures, the paired cycles

had a mean missing communication pair rate of less than 3 pairs or less than 0.53% across all

networks (95% CI). Hence in column two, it can be seen that the fault coverage is greater than

99.47%. Our redundant quorum cycles technique, columns 3 and 4, had a mean missing pair

rate (95% CI) of less than 0.46 and 0.26 respectively across all networks, which is reflected in

fault coverages greater than 99.85%.

Depending on the network, the difference between a 99.47% and 99.99% fault coverage could

be significant. Being able to achieve that with only the moderate overheads examined in the



www.manaraa.com

94

Table 7.4: Percent mean fault coverage (95% CI) of paired cycles using our redundant quorum

solution experiencing a single link fault.

Network R = 1 (%) R = 2 (%) R = 3 (%)

NSFNET 99.47 ± 0.04 99.85 ± 0.02 99.99 ± 0.00

ARPANET 99.81 ± 0.01 99.93 ± 0.01 99.98 ± 0.00

American 99.60 ± 0.02 99.92 ± 0.01 99.95 ± 0.00

Chinese 99.90 ± 0.00 99.98 ± 0.00 99.99 ± 0.00

Table 7.5: Percent mean fault coverage (95% CI) of paired cycles using our redundant quorum

solution experiencing two simultaneous link faults.

Network R = 1 (%) R = 2 (%) R = 3 (%)

NSFNET 97.61 ± 0.03 98.71 ± 0.03 99.05 ± 0.03

ARPANET 98.71 ± 0.02 99.19 ± 0.01 99.50 ± 0.01

American 98.63 ± 0.01 99.44 ± 0.01 99.62 ± 0.01

Chinese 99.69 ± 0.00 99.91 ± 0.00 99.95 ± 0.00

previous section is just one of the benefits of the redundant quorums set technique. Being able

to dial in on the fault coverage desired using single (R = 1), double (R = 2), or triple (R = 3)

redundancy also adds to the flexibility.

7.4.2.2 Two fault case

A significantly more complex model considers two faults simultaneously. All possible two

edge failure combinations in the network are simulated. Once again, it is possible for some

networks and their corresponding cycle routes to not utilize one or more network links, so

edges not used in a particular solution are not considered in our simulation to avoid biasing the

results with zero missing pairs data points. We then examine the network’s ability to serve all

potential point-to-point requests by counting pairs of nodes that would be able to communicate

and conversely those pairs that are unable to communicate.

Our simulation results showed our redundant quorum-based cycle technique had 98.71 -

99.91% and 99.05 - 99.95% fault coverage, R = 2 and R = 3 respectively, in the four networks

tested (Table 7.5). In Figure 7.4, we compare the state-of-art paired cycle approach with our

redundant technique also with paired cycles. With two edge failures, the paired cycles had a



www.manaraa.com

95

Figure 7.4: Percent mean fault coverage of paired cycles using our redundant quorum solution

experiencing two simultaneous link faults.

mean missing communication pair rate of 8.89 pairs (2.39%) or less across all networks (95%

Confidence Interval). Hence in the R = 1 column, it can be seen that the fault coverage is

97.61% or more. Our redundant quorums set technique, R = 2 and R = 3, had an average

missing pair rate (95% CI) of 3.09 and 2.09 or less respectively across all networks, which is

reflected in fault coverages of 98.71% or more.

An interesting aspect of the data is that the benefit of additional quorum redundancy in

paired cycle solutions is network dependent. All networks had improved fault coverage with

additional quorums set redundancy (Fig. 7.4); however, the NSFNET network had larger in-

creases than others. Additionally, all networks increasing to R = 3 had diminishing returns

compared to the increases seen when moving from R = 1 to R = 2.



www.manaraa.com

96

7.5 Redundant Cyclic Quorums Set - Single Cycle Network Analysis

In the previous analysis using paired cycle routing (Section 7.4), our generalization of R

redundant quorums sets had moderate increases in resource usage and showed improvements

to fault coverage. This section uses a similar experiment setup with the same four common

networks (Fig. 7.2 on Page 86) and an implementation of the ECBRA heuristic [Somani et al.

(2011)] to perform the cycle routing. However in contrast, we are examining using additional

cyclic quorum redundancy with just a single cycle compared to paired cycles used in the previous

section and prior art.

The additional redundancy is used to distribute node communication pairs across different

cycles, e.g., 0�1 and 0�1 would not occur within the same cycle. Recall that optical light-

trail cycles are unidirectional, so prior art would satisfied both 0�1 and 0�1 with a pair of

cycles. One cycle would form the forward communication 0�1, while the second cycle would

form the backward communication 0�1. By distributing the communication pair responsibil-

ity throughout the network, we may only need a single cycle, thus significantly reducing the

required amount of network resources. We examine this solution and its ability to deliver the

needed fault tolerance.

7.5.1 Fault-free operational analysis

The more links that a set of quorum cycles uses, the fewer (wavelength) resources that can be

assigned to each link. Additionally, each logical link represents a required physical transmitter

and receiver, hence capital costs.

Table 7.6 shows significant 38.81 - 42.42% resource reduction when using R = 3 redundancy

in quorums over the more traditional, prior art methods of simply using paired cycles. Using

R = 2 gives even better resource reduction, as shown in Table 7.6. This reduction represents

the potential for lower capital costs in terms of physical transmitters and receivers needed and

the potential for more (wavelength) resource availability within the network. The paired cycles

results with a 95% confidence interval (CI) for R = 1 in Table 7.3 is repeated in column two

of Table 7.6 for comparison to the single cycle, increased quorum redundancy technique. Our



www.manaraa.com

97

T
ab

le
7
.6

:
M

ea
n

li
n
k
s

u
se

d
b
y

si
n

gl
e

cy
cl

es
co

m
p

ar
ed

to
p

ai
re

d
cy

cl
es

u
si

n
g

ou
r

re
d

u
n

d
a
n
t

cy
cl

ic
q
u

o
ru

m
so

lu
ti

o
n

(9
5
%

C
I)

R
=

1
(P

a
ir

e
d

)
R

=
2

(S
in

g
le

)
R

=
3

(S
in

g
le

)

N
e
tw

o
rk

L
in

k
s

L
in

k
s

R
e
d

u
c
ti

o
n

(%
)

L
in

k
s

R
e
d

u
c
ti

o
n

(%
)

N
S

F
N

E
T

2
49

.3
2
±

1.
37

13
5.

41
±

0.
60

-4
5.

69
14

5.
05
±

0
.7

4
-4

1
.8

2

A
R

P
A

N
E

T
5
1
1.

90
±

1.
87

26
9.

63
±

0.
76

-4
7.

33
29

4.
75
±

0
.9

6
-4

2
.4

2

A
m

er
ic

a
n

64
1
.3

8
±

2.
10

36
0.

03
±

0.
98

-4
3.

87
37

6.
86
±

0
.7

7
-4

1
.2

4

C
h

in
es

e
26

7
3.

30
±

7.
11

15
27

.3
2
±

3.
50

-4
2.

87
16

35
.7

0
±

2
.9

9
-3

8
.8

1



www.manaraa.com

98

Table 7.7: Mean percent missing node pairs (95% CI) by single cycles using our redundant

quorum solution

Network R = 1 (Paired) (%) R = 2 (Single) (%) R = 3 (Single) (%)

NSFNET 0.00 ± 0.00 0.95 ± 0.15 0.04 ± 0.03

ARPANET 0.00 ± 0.00 0.36 ± 0.07 0.13 ± 0.04

American 0.00 ± 0.00 0.49 ± 0.07 0.21 ± 0.04

Chinese 0.00 ± 0.00 0.27 ± 0.03 0.09 ± 0.01

redundant quorum technique uses far fewer links (shown in columns 3 - 6.) R = 2 comes close

to halving the necessary resources, whereas R = 3 is slightly larger at approximately 60% of

the paired R = 1 paired cycle solution.

Previously paired light-trails were used to form all of the point-to-point communication node

pairs with minimum sized quorum cycles. Kleinheksel and Somani (2015c,a) consider utilizing

intentionally formed redundant node pairs within the quorum routing to reduce the resources

used as a potential trade-off to network performance. We analyze the impact of increasing the

redundancy within quorums to R = 3 and its impact of keeping resource utilization low. To

measure this cost, the missing node pairs metric is used.

Ideally, like the paired cycle case, there would be 0% missing, however single cycles do not

have the benefit of both (ei, ej) and (ej , ei) pairs occurring in the same cycle. Table 7.7 shows

two important results. First, the dramatic reduction in resource utilization came at a trade off

of a few missing communication pairs. R = 2 missed 0.95% or fewer on average (95% CI), and

R = 3 missed even fewer at 0.21% or less on average (95% CI). The paired cycles (column 2,

Table 7.6) used significantly more resources and did not miss any pairs (column 2, Table 7.7).

Secondly, compared to R = 2 single cycles, our redundant R = 3 cycles performs approximately

2+ times better every time. As seen in Table 7.6, this performance improvement came at a

only a slightly higher cost, while still being significantly smaller than the state of art approach.

The cyclic quorums set method was proven to guarantee that all of the node pairs exist

(Sections 5.3.2 and 5.4). It is the limitations of unidirectional optical light-trail cycles with

its required one optical shutter in the off state per cycle that has caused the missing pairs

and the potential need for additional compensation steps. Compensation is possible using an



www.manaraa.com

99

Table 7.8: Percent mean fault coverage (95% CI) of our single cycle, redundant quorum solution

experiencing a single link fault.

Network R = 1 (Paired) (%) R = 2 (Single) (%) R = 3 (Single) (%)

NSFNET 99.47 ± 0.04 96.52 ± 0.09 97.81 ± 0.09

ARPANET 99.81 ± 0.01 98.25 ± 0.05 99.05 ± 0.04

American 99.60 ± 0.02 98.23 ± 0.04 98.90 ± 0.03

Chinese 99.90 ± 0.00 99.36 ± 0.01 99.71 ± 0.00

off-the-shelf solution of an additional routing step involving an Optical-to-Electrical-to-Optical

(O/E/O) conversion and retransmission by a hub node. Even so, on average the R = 2 and

R = 3 redundant quorums cycle solutions would require infrequent additional steps considering

the missing pairs are less than 1% on average.

7.5.2 Fault-tolerant operational analysis

Using our generalized R quorum redundancy rather than cycle pairs can save significant

resources; however, this cannot come at a significant determent to fault tolerance.

7.5.2.1 Single fault case

Again to model the fault, we simulate the failure of each used edge, (ei, ej) ∈ E, in the 100

node mappings of each network model, G = (V,E). The edges not used in a particular mapping

are ignored to prevent biasing the results with zero missing pairs data points. We then examine

the network’s ability to serve all potential point-to-point requests by counting pairs of nodes

that would be able to communicate and conversely those pairs that are unable to communicate.

The results are then reported as fault coverage, total pairs able to communicate as a percentage

of total point-to-point pairs. 100% would be perfect coverage, whereas 0% would be no fault

coverage at all.

Our simulation results (Table 7.8) showed our redundant quorum-based cycle technique

had 96.52 - 99.36% and 97.81 - 99.71% fault coverages, R = 2 and R = 3 respectively, in the

four networks tested. In Figure 7.5, we compare the state-of-art paired cycle approach with our

quorum redundant technique with single cycles that uses significantly fewer resources. With



www.manaraa.com

100

Figure 7.5: Percent mean fault coverage of our single cycle, redundant quorum solution expe-

riencing a single link fault.

single link failures, the paired cycles had a mean missing communication pair rate of less than 3

pairs or less than 0.53% across all networks (95% CI). Hence the R = 1 (Paired) column shows

mean fault coverage percentages is greater than 99.47% for all four networks. Our redundant

quorum cycles technique, R = 2 and R = 3 (Single), could not reach that level of coverage, but

did achieve an acceptable mean fault coverage rate (95% CI) of greater than 96.52 and 97.81%,

respectively, across all networks.

While neither single cycle R = 2 or R = 3 could achieve the same level of fault coverage as

the paired cycle solution, they did have missing pair rates better than 3.48 and 2.29%, respec-

tively, while achieving significant resource savings. In networks where an additional approxi-

mately 40% of resources could better be utilized for communication rather than redundancy,

the trade off of missing a relatively small percentage of communications during fault conditions

may be considered tolerable.



www.manaraa.com

101

Table 7.9: Percent mean fault coverage (95% CI) of our single cycle, redundant quorum solution

experiencing two simultaneous link faults.

Network R = 1 (Paired) (%) R = 2 (Single) (%) R = 3 (Single) (%)

NSFNET 97.61 ± 0.03 91.94 ± 0.05 93.37 ± 0.05

ARPANET 98.71 ± 0.02 95.17 ± 0.03 96.64 ± 0.03

American 98.63 ± 0.01 96.09 ± 0.02 97.20 ± 0.01

Chinese 99.69 ± 0.00 98.77 ± 0.00 99.33 ± 0.00

7.5.2.2 Two fault case

The more complex two fault model considers all possible two edge failure combinations in

the simulated networks. Edges not utilized by a particular set of quorum cycle routings are

ignored to prevent biasing of the results data with zero missing pairs data points. We then

examine the network’s ability to serve all potential point-to-point requests by counting pairs

of nodes that would be able to communicate and conversely those pairs that are unable to

communicate.

Our simulation results (Table 7.9) showed our redundant quorum-based cycle technique

had 91.94 - 98.77% and 93.37 - 99.33% fault coverage, R = 2 and R = 3 respectively, in the

four networks tested. In Figure 7.6, we compare the state-of-art paired cycle approach with our

quorum redundant technique with single cycles that uses significantly fewer resources. With two

edge failures, the paired cycles had a mean missing communication pair rate of less than 9 pairs

or less than 2.39% across all networks (95% CI). Hence in the R = 1 (Paired) column, it can

be seen that the fault coverage is greater than 97.61%. Our redundant quorums set technique,

R = 2 and R = 3 (Single), could not reach that level for all networks. Overall the missing pair

rate (95% CI) was less than 8.06 and 6.63%, respectively, across all networks, which is reflected

in fault coverages greater than 91.94%.

It is worth pointing out again that the paired cycles solution uses more than 38% more

resources on average (95% CI). The redundant quorums cycle technique using only single cycles

performed at most 6% worse on average in terms of mean fault coverage on the rarer two

simultaneous fault cases. This could be an acceptable trade off in many networks.



www.manaraa.com

102

Figure 7.6: Percent mean fault coverage of our single cycle, redundant quorum solution expe-

riencing two simultaneous link faults. For graph clarity and consistency NSFNET for R = 2

(Single) at 91.94% and for R = 3 (Single) at 93.37% mean fault coverage were not included in

the graph.

Additionally, an interesting aspect of the data is that the results appear to have some

network dependence. The networks with the larger number of nodes had better resiliency to

faults than the smaller networks. This is likely a byproduct of our quorums set solution, where

every cycle contains only a small, size k, subset of the total nodes. In all graphs, this translates

into cycles that potentially can span the diameter of the graph. In larger graphs this could lead

to more non-quorum nodes being passed through while forming the cycle, which could translate

into more than the minimum calculated quorums set pairs (see Sections 5.1 and 5.4).

7.6 Improving Single Cycle Routing Based on Redundant Cyclic Quorums

In Section 7.5.1, we had an interesting observation that although the cyclic quorums set

method was proven to guarantee that all of the node pairs exist (Sections 5.3.2 and 5.4), the

implementation that utilized the quorums still had the limitation of unidirectional optical light-



www.manaraa.com

103

trail cycles requiring one optical shutter in the off state per cycle. This led to missing pairs

even in fault-free states of the network and likely contributed to at least some of missing pairs

during fault scenarios.

When we used paired cycles, the routing order within a cycle did not matter too much. In any

given pair of cycles, there was one in the forward direction and the other in the backwards. For

example, if the forward cycle route formed the 0�1 communication route, then the backward

cycle route would form the 0�1 communication route.

With a single, unidirectional cycle we were taking for granted that redundant cyclic quorums

were guaranteeing two pairs of all node pairs. However, the route direction of the pairs is not

enforced. Hence, without the backwards cycle from paired cycle, it turned out that the single

cycle could still result in two forward 0�1 paths in the network’s cycle route implementation

rather than one of each (0�1 and 0�1 communication routes).

Looking closer at the source of the problem, i.e., the unidirectional optical light-trail cycles,

we developed an alternative heuristic solution to improve the performance. The cycles were

routed using the ECBRA heuristic [Somani et al. (2011)] and the redundant cyclic quorums for

R = 2 and R = 3 (see Appendix B for the redundant cyclic quorum listing). Once routed, we

treated the first node in the corresponding cyclic quorum to be the hub node and then formed

the cycle in the order provided by the ECBRA heuristic. By controlling the order to either be

forward or backwards on a particular unidirectional optical light-trail cycle, we can influence

which node pairs are formed.

7.6.1 Greedy cycle direction based on missing pairs

There are |V | = P redundant cyclic quorums for a given network G = (V,E). Each of these

quorums has a corresponding cycle route and each route is either in the forward or backward

direction. This results in O
(
2P
)

possible combinations of cycle directions for a network.

In this section, we describe our greedy algorithm to determine cycle direction and evaluate

the improvement in network performance. Ultimately, by controlling the forwards or backwards

direction of a cycle, we want to decrease (and eliminate) the number of missing pairs under

fault-free conditions. While doing this, the network’s fault tolerance is also anticipated to

increase.



www.manaraa.com

104

Algorithm 18 Initial Cycle Direction(Cycles,V )

1: Pair Count PC [ei] [ej ]← 0, ∀ei, ej ∈ V
2: for all c ∈ Cycles do

3: Count number of new pairs added to PC if Cycle c.direction = Forward

4: Count number of new pairs added to PC if Cycle c.direction = Backward

5: if Forward count ≥ Backward count then

6: c.direction← Forward

7: Increment PC [ei] [ej ] for each forward direction pair from Cycle c

8: else

9: c.direction← Backward

10: Increment PC [ei] [ej ] for each backward direction pair from Cycle c

11: end if

12: end for

Algorithm 18 greedily chooses each cycle’s initial direction. All forward and backward node

pairs need to be formed in the network. We keep track of how many of each pair have been form

in variable PC on Line 1. We iterate through all of the routed cycles, one for each redundant

quorum (Line 2). The cycle’s direction is chosen by whichever direction will eliminate more

missing pairs from PC. Then all of that direction’s pairs (not just the missing ones) are added

to PC (Line 7 or Line 10). The next cycle’s direction is chosen the same way until all cycles

have been assigned an initial direction.

There are |V | = P redundant cyclic quorums for a given network G = (V,E). Each of

these quorums has a corresponding cycle route in Cycles causing Algorithm 18’s For-loop on

Line 2 to execute O (P ) times. Both forward and backward new pair counts, as well as, the

final incrementing of PC after a direction is chosen requires enumerating all possible pairs

in a particular cycle. From Equation 5.28 in Section 5.4, each quorum (i.e., cycle) will be of

size approximately O
(√

RP
)

. Forming all pairs is
(
N
2

)
= O

(
N2
)

operation, so O
(√

RP
2
)

=

O (RP ). All combined this results in an O (P ∗RP ) = O
(
RP 2

)
runtime to find the initial cycle

direction.

The order of cycle iteration has an impact on the final direction of all cycles. It is possible

that a cycle processed later may add pairs to PC that a previous cycle had already contributed.

This opens up the possibility that a cycle processed earlier may be able to change to a more

favorable direction and further reduce the number of missing pairs. Because of this, we have a

second greedy heuristic, Algorithm 19.



www.manaraa.com

105

Algorithm 19 Greedy Update Cycle Direction(Cycles,V ,PC)

1: Changed← True

2: while Changed 6= False do

3: Changed← False

4: for all c ∈ Cycles do

5: Decrement PC [ei] [ej ] for each pair from Cycle c

6: Count number of new pairs added to PC if Cycle c.direction = Forward

7: Count number of new pairs added to PC if Cycle c.direction = Backward

8: if Forward count > Backward count then

9: Increment PC [ei] [ej ] for each forward direction pair from Cycle c

10: if c.direction 6= Forward then

11: c.direction← Forward

12: Changed← True

13: end if

14: else if Backward count > Forward count then

15: Increment PC [ei] [ej ] for each backward direction pair from Cycle c

16: if c.direction 6= Backward then

17: c.direction← Backward

18: Changed← True

19: end if

20: else . Forward count = Backward count, default to no change

21: Increment PC [ei] [ej ] for each pair from Cycle c

22: end if

23: end for

24: end while

This algorithm modifies the direction of a single cycle at a time to improve the missing pairs

count. It continues modifying cycle directions until no further single cycle direction flips result

in improvements being made. Although this appears to be an infinite loop on the surface,

its runtime is considerably faster than evaluating all O
(
2P
)

possible combinations of cycle

directions for a network.

Algorithm 19 uses a variable Changed to determine if it should continue searching for a

better combination of cycle directions (Lines 1-3). Line 4 iterates through all of the routed

cycles. The pair count variable PC from the cycle direction initialization is utilized once again

to account for the number of node pairs formed and also for how many pairs are missing. The

cycle’s direction is then chosen by whichever direction will eliminate more missing pairs from

PC. Then all of that direction’s pairs (not just the missing ones) are added to PC (Line 9 or

Line 15). If this selection causes the cycle’s direction to change, then the Changed variable is



www.manaraa.com

106

set to True so the While-loop knows to continue searching. If the backward and forward missing

pair counts are the same, then the direction defaults to the direction the cycle is currently (Line

20). This process continues until an entire iteration of Cycles results in no direction changes.

The outer While-loop continues until there are no direction changes. A direction change will

only occur if it results in an improvement in the number of missing pairs. There are |V | = P

nodes and forming all pairs is
(
P
2

)
= O

(
P 2
)

operation. So, even if every iteration of the While-

loop only improved the number of missing pairs by 1, it would still only loop O
(
P 2
)

times.

The For-loop on Line 4 will execute O (P ) times as it iterates over all cycles. Both forward and

backward new pair counts, as well as, the initial decrement and final incrementing of PC after

a direction is chosen requires enumerating all possible pairs in a particular cycle, hence O (RP ),

same as was calculated for Algorithm 18. All combined, this results in an O
(
P 2 ∗ P ∗RP

)
=

O
(
RP 4

)
runtime to greedily update the cycle direction.

A 4th power is certainly not desired for most algorithms; but compared to O
(
2P
)
, it scales

well. For P greater than 16 this greedy approach is better than the brute force approach. And

certainly for P ≤ 16, the outer While-loop in Algorithm 19 will typically not behave in the

worst case having to execute O
(
P 2
)

times. In fact, given results from Section 7.5.1, on average

less than 1% of the pairs were missing. Therefore, we can expect that the runtime behavior of

the While-loop to be quite small for network inputs similar to those in our analysis.

7.6.2 Greedy missing pairs heuristic results

This section uses a similar experiment setup as Sections 7.4 and 7.5. We used the same

four common networks (Fig. 7.2 on Page 86) and an implementation of the ECBRA heuristic

[Somani et al. (2011)] to perform the cycle routing. We also are using just a single cycle based

on our generalized R redundant quorums sets (see Appendix B for the redundant cyclic quorum

listing).

7.6.2.1 Fault-free operational analysis

Section 7.5.1 showed significant resource usage reductions freeing up (wavelength) resource

availability within the network and adding the potential for lower capital costs in terms of



www.manaraa.com

107

Table 7.10: Comparing fault-free operation mean percent missing node pairs (95% CI) by single

cycles using our redundant quorum solution and greedy cycle direction heuristic

R = 1 R = 2 (Single) (%)

Network (Paired) (%) Forward Random Greedy Reduction

NSFNET 0.00 ± 0.00 0.95 ± 0.15 0.85 ± 0.12 0.02 ± 0.02 -98.27

ARPANET 0.00 ± 0.00 0.36 ± 0.07 0.31 ± 0.06 0.01 ± 0.01 -97.78

American 0.00 ± 0.00 0.49 ± 0.07 0.52 ± 0.07 0.02 ± 0.01 -95.56

Chinese 0.00 ± 0.00 0.27 ± 0.03 0.26 ± 0.02 0.01 ± 0.00 -94.98

Table 7.10: (Continued)

Comparing fault-free operation mean percent missing node pairs (95% CI) by single cycles

using our redundant quorum solution and greedy cycle direction heuristic

R = 1 R = 3 (Single) (%)

Network (Paired) (%) Forward Random Greedy Reduction

NSFNET 0.00 ± 0.00 0.04 ± 0.03 0.85 ± 0.12 0.00 ± 0.00 -100

ARPANET 0.00 ± 0.00 0.13 ± 0.04 0.31 ± 0.06 0.00 ± 0.00 -100

American 0.00 ± 0.00 0.21 ± 0.04 0.52 ± 0.07 0.00 ± 0.00 -100

Chinese 0.00 ± 0.00 0.09 ± 0.01 0.26 ± 0.02 0.00 ± 0.00 -100

physical transmitters and receivers needed. The challenge, though, was this came at a cost.

There were missing communication node pairs even in fault-free operation of the network.

Table 7.10 shows the significant improvements that our greedy heuristic had on this issue.

An average reduction of greater than 94% of missing pairs for single cycle routing based on

R = 2 redundant cyclic quorums. And a complete elimination of missing pairs for R = 3

redundancy.

Column 2 in Table 7.10 is the prior art paired cycle solution (Same results as are in Table

7.7). This requires at minimum 38% more link resources on average, but no communication

node pairs are missing. Originally in Section 7.5, we used the cycle routing directly from the

ECBRA heuristic and called this the forward direction. This produced the percent missing

pairs in Column 3 (Same results as are in Table 7.7).

The emphasis on the greedy heuristic was that chosen direction of the cycle matters. To

emphasize this point and to confirm that our approach is actually doing something intelligent,

we also included a random cycle direction algorithm (Column 4). There we see the random



www.manaraa.com

108

Table 7.11: Greedy heuristic mean cycle direction flips while optimizing the redundant quorum

single cycle solution (95% CI)

Network R = 2 (Single) R = 3 (Single)

NSFNET 0.31 ± 0.11 0.00 ± 0.00

ARPANET 0.24 ± 0.11 0.00 ± 0.00

American 0.50 ± 0.14 0.09 ± 0.06

Chinese 1.61 ± 0.25 0.18 ± 0.08

direction on average performs similar (and at times worse) than simply using the forward cycle

directions. Columns 5 and 6 show the impact from our greedy heuristic. Nearly all of the

missing pairs are removed on average from the R = 2 redundant quorum cycles and all of

the missing pairs are eliminated from the R = 3 redundant quorum cycles. This makes our R

redundant quorum, single cycle solution a significant improvement over prior art’s paired cycle

approach. All communication pairs are formed in the network and done so with significantly

fewer resources.

In the prior section (Section 7.6.1), Algorithm 19 had a theoretical runtime of O
(
RP 4

)
,

which could appear to be significant. One of the drivers of this was that there could potentially

be up to O
(
P 2
)

cycle direction changes. When we ran our heuristic while testing on the four

networks in Figure 7.2, we did not find anywhere close to that many direction changes. Table

7.11 shows that on real networks, the number of flips is less than two on average. This means

that the observable runtime of the greedy heuristic is much more manageable and closer to

O
(
RP 2

)
, which is the same as Algorithm 18’s greedy determination of the initial single cycle

directions. Both runtimes are significantly better than the brute force alternative of O
(
2P
)
.

7.6.2.2 Fault-tolerant operational analysis

Section 7.5.2 illustrated a trade off between the significant reduction to resource usage

and maintaining the same level of fault tolerance that prior art offered. Using only single

cycles had a small impact on fault tolerance of the optical network, which for some networks

and applications may still be acceptable given the improved resource usage. With the greedy



www.manaraa.com

109

Table 7.12: Comparing percent mean fault coverage (95% CI) of our single cycle, redundant

quorum solution and greedy cycle direction heuristic experiencing a single link fault.

R = 1 R = 2 (Single) (%)

Network (Paired) (%) Forward Random Greedy

NSFNET 99.47 ± 0.04 96.52 ± 0.09 96.84 ± 0.08 97.92 ± 0.07

ARPANET 99.81 ± 0.01 98.25 ± 0.05 98.28 ± 0.05 98.79 ± 0.04

American 99.60 ± 0.02 98.23 ± 0.04 98.21 ± 0.04 98.92 ± 0.03

Chinese 99.90 ± 0.00 99.36 ± 0.01 99.38 ± 0.01 99.67 ± 0.01

Table 7.12: (Continued)

Comparing percent mean fault coverage (95% CI) of our single cycle, redundant quorum

solution and greedy cycle direction heuristic experiencing a single link fault.

R = 1 R = 3 (Single) (%)

Network (Paired) (%) Forward Random Greedy

NSFNET 99.47 ± 0.04 97.81 ± 0.09 96.84 ± 0.08 98.59 ± 0.06

ARPANET 99.81 ± 0.01 99.05 ± 0.04 98.28 ± 0.05 99.42 ± 0.03

American 99.60 ± 0.02 98.90 ± 0.03 98.21 ± 0.04 99.34 ± 0.02

Chinese 99.90 ± 0.00 99.71 ± 0.00 99.38 ± 0.01 99.84 ± 0.00

heuristic addressing missing communication pair issues in the prior section, this section looks

at the improvements to fault tolerance.

To model the fault(s), we simulate the failure of used edge(s), (ei, ej) ∈ E, in the 100 node

mappings of each network model, G = (V,E). The edges not used are ignored. We then examine

the network’s ability to serve all potential point-to-point requests. The results are then reported

as fault coverage, total pairs able to communicate as a percentage of total point-to-point pairs.

100% would be perfect fault coverage, whereas 0% is no fault coverage at all.

Our single fault simulation results (Table 7.12) showed our redundant quorum-based cycle

technique with the greedy cycle direction heuristic had 97.92 - 99.67% and 98.59 - 99.84%

fault coverages, R = 2 and R = 3 respectively, in the four networks tested. This was a 31.16

- 48.74% and 35.48 - 44.85%, R = 2 and R = 3 respectively, improvement over the number

of missing pairs when only using forward cycle directions (i.e., Section 7.5.2). Again, we also

test the performance against random cycle direction choices (Column 4). This illustrates that



www.manaraa.com

110

Figure 7.7: Mean fault coverage (%) of our single cycle, redundant quorum solution and greedy

cycle direction heuristic experiencing a single link fault.

the greedy heuristic, while it was designed to eliminate missing pairs for fault-free network

operation, still provides an intelligent improvement for fault conditions as well.

In Figure 7.7, we compare the state-of-art paired cycle approach with our greedy quorum

redundant technique with single cycles that uses significantly fewer resources. With single link

failures, the paired cycles had a mean missing communication pair rate of less than 3 pairs

or less than 0.53% across all networks (95% CI). Hence the R = 1 (Paired) column shows

mean fault coverage percentages is greater than 99.47% for all four networks. Our redundant

quorum cycles technique with greedy heuristic, R = 2 and R = 3 (Single), reduced the number

of missing pairs by greater than 30% when compared to without the heuristic (i.e., all forward

cycles). Even with the improvement though, the fault tolerance still could not reach the level

of coverage that the prior art’s paired cycles. The Figure 7.7 does show a competitive mean

fault coverage rate (95% CI) of greater than 97.92 and 98.59%, respectively, across all networks

when the greedy cycle direction heuristic was used with our single quorum cycle solution.



www.manaraa.com

111

Table 7.13: Comparing percent mean fault coverage (95% CI) of our single cycle, redundant

quorum solution and greedy cycle direction heuristic experiencing two simultaneous link faults.

R = 1 R = 2 (Single) (%)

Network (Paired) (%) Forward Random Greedy

NSFNET 97.61 ± 0.03 91.94 ± 0.05 92.43 ± 0.05 93.67 ± 0.05

ARPANET 98.71 ± 0.02 95.17 ± 0.03 95.18 ± 0.03 95.89 ± 0.03

American 98.63 ± 0.01 96.09 ± 0.02 96.09 ± 0.02 96.99 ± 0.01

Chinese 99.69 ± 0.00 98.77 ± 0.00 98.78 ± 0.00 99.13 ± 0.00

Table 7.13: (Continued)

Comparing percent mean fault coverage (95% CI) of our single cycle, redundant quorum

solution and greedy cycle direction heuristic experiencing two simultaneous link faults.

R = 1 R = 3 (Single) (%)

Network (Paired) (%) Forward Random Greedy

NSFNET 97.61 ± 0.03 93.37 ± 0.05 92.43 ± 0.05 94.88 ± 0.05

ARPANET 98.71 ± 0.02 96.64 ± 0.03 95.18 ± 0.03 97.33 ± 0.02

American 98.63 ± 0.01 97.20 ± 0.01 96.09 ± 0.02 97.83 ± 0.01

Chinese 99.69 ± 0.00 99.33 ± 0.00 98.78 ± 0.00 99.50 ± 0.00

Our two simultaneous link fault simulation results (Table 7.13) showed our redundant

quorum-based cycle technique with the greedy cycle direction heuristic had 93.67 - 99.13%

and 94.88 - 99.50% fault coverages, R = 2 and R = 3 respectively, in the four networks tested.

This was a 14.98 - 29.61% and 20.66 - 26.14%, R = 2 and R = 3 respectively, improvement

over the number of missing pairs when only using forward cycle directions (i.e., Section 7.5.2).

In Figure 7.8, we compare with the state-of-art paired cycle approach. With two simultane-

ous link failures, the paired cycles had a mean missing communication pair rate of less than 9

pairs or less than 2.39% across all networks (95% CI). Hence the R = 1 (Paired) column shows

mean fault coverage percentages is greater than 97.61% for all four networks. Our redundant

quorum cycles technique with greedy heuristic, R = 2 and R = 3 (Single), reduced the number

of missing pairs by greater than 14% when compared to without the heuristic (i.e., all forward

cycles). Even with the improvement though, the fault tolerance still could not reach the level of

coverage that the prior art’s paired cycles. The Figure 7.8 does show a competitive mean fault

coverage rates (95% CI) and may be justified by the significant reductions in resource usage

(Table 7.6).



www.manaraa.com

112

Figure 7.8: Mean fault coverage (%) of our single cycle, redundant quorum solution and greedy

cycle direction heuristic experiencing two simultaneous link faults. For graph clarity and con-

sistency NSFNET for R = 2 (Single) at 93.67% and for R = 3 (Single) at 94.88% mean fault

coverage were not included in the graph.



www.manaraa.com

113

CHAPTER 8 CONCLUSIONS

Our work addresses some of the challenges facing “all-pairs” interactions. These interactions

require all elements (nodes or data) to interact with all other elements in the set. Challenges

with growing data sizes impacts both computations and communications all-pairs applications.

We analyzed applications in both areas and proposed solutions based on cyclic quorums sets.

8.1 Quorums

Quorums are typically seen in distributed communication and algorithms, coordination,

mutual exclusion, data replication and consensus applications. We used their properties to

address challenges in a different problem, all-pairs interactions.

For a given set of elements, numerous quorums sets can be found. Many of those sets may

also satisfy desirable distributed properties defined by Maekawa (1985) and may further be

able to facilitate the all-pairs interactions in the problems we addressed. Our work did not

seek to enumerate all possible quorums set solutions for all-pairs interaction problems, but

instead focused on systematic solutions that eloquently and efficiently managed the distributed

problems.

To do this, we observed and proved that cyclic quorums have an “all-pairs” property [Klein-

heksel and Somani (2016)], such that all pairs of elements are present together in at least one

quorum. The cyclic quorums also had desirable properties like equal size and equal distribution

of elements, such that work and responsibilities were equable.

Observing that there could be redundant pairs within the quorums set, we sought to exploit

this natural occurrence. We defined R redundant cyclic quorums sets as having R redundant

pairs of elements [Kleinheksel and Somani (2015c,a)]. The same difference sets that guaranteed

all-pairs could also be used to guarantee R all-pairs too.



www.manaraa.com

114

8.2 Computation Application

We used cyclic quorums sets to scale all-pairs computation problems. Cyclic quorum sets

have an all-pairs property that allows for data replication to be minimal and leads to simple

computation management as well [Kleinheksel and Somani (2016)]. The corresponding dataset

quorums were O

(
N√
(P )

)
in size, up to 50% smaller than the dual N√

(P )
array implementations,

and significantly smaller than solutions requiring all data. The cyclic quorums “all-pairs” prop-

erty led to a simple algorithm design with all of the data needed for pairing existing in a node’s

dataset quorum.

Our evaluation took a single node bioinformatics all-pairs implementation and demonstrated

scalability with our cyclic quorum set methods on real and synthetic datasets. Average runtimes

showed the ability to scale linearly with additional nodes added. On one real dataset, greater

than 150x (super-linear) runtime speedup and 80% reduction in memory usage per node was

observed using 31 nodes.

For non-Singer difference sets, we developed a decentralized, communication-less computa-

tion management technique to identify and avoid all redundant computations in the
(
k
2

)
quorum

dataset pairings. This showed a greater flexibility for users to efficiently utilize all of their local

or cloud HPC resources. For some P nodes, the additional computation management logic in-

creased the average runtime speedup by as much as 30%, while the overhead of the management

was typically less than 1%.

8.3 Communication Application

We show efficiency, distributed control, and fault tolerance can also be accomplished in

optical network routing by applying quorums set theory. Specifically, we used cyclic quorums

sets to route light-trail cycles, such that all pairs of nodes occurred in one or more cycles.

We analyzed the fault tolerance of the cyclic quorums set routing approach [Kleinheksel and

Somani (2015b)]. In the presence of network single link faults, greater than 99% average fault

coverage enabled the continued operation of nearly all point-to-point communication requests

in the network.



www.manaraa.com

115

When we applied R redundant cyclic quorums to the state of the art paired cycle techniques,

it guaranteed all network communication pairs appeared R times within a routed cycle set

[Kleinheksel and Somani (2015a)]. The results showed optical networks achieving near fault-

tolerance with 98.65 - 99.91% and 99.04 - 99.95% fault coverage rates respectively on the two

simultaneous faults simulation. This improvement in fault tolerance performance for R = 2 and

R = 3 came at the expense of a small additional resource cost. The paired cycle techniques on

average used 5.63 - 14.18% and 15.21 - 22.29% more resources, respectively.

When applied to our single cycle routing technique, the R redundant quorums significantly

reduced resource usage and maintained high fault tolerance capabilities [Kleinheksel and Somani

(2015c,a)]. The single cycle technique had almost fault-tolerant cycles that used significantly

fewer resources (42.91 - 47.19% and 38.85 - 42.39% fewer, respectively), while at the same

time maintained a high degree of fault-tolerance with 92.01 - 98.77% and 93.23 - 99.34% fault

coverage, respectively, on the two simultaneous faults simulation.

With the paired cycles in prior art, the direction of communication pairs were not a con-

sideration because both directions were always present. When we switched to single cycles, the

resource usage fell dramatically (greater than 38%), and there was no longer the guarantee

that both directions of a communication pair existed. To address this limitation, we developed

a greedy algorithm to determine whether a cycle should be routed in the forward or backward

direction in order to eliminate the most missing pairs and achieve higher fault tolerance. Miss-

ing pairs were reduced by over 94% for R = 2 redundant quorum single cycles and eliminated

completely for R = 3. Fault tolerance improved as well. Missing pairs during single link failures

decreased by over 30%. Two simultaneous link failures saw a decrease in missing pairs by over

14%. This illustrated a trade off between significant resource usage reductions and the fault

tolerance those resources provide.



www.manaraa.com

116

BIBLIOGRAPHY

Agrawal, G. P. (2007). Nonlinear fiber optics. Academic press.

Amazon (2016a). Amazon ec2 instance types. https://aws.amazon.com/ec2/

instance-types/.

Amazon (2016b). Aws high performance computing. https://aws.amazon.com/hpc/.

Arora, N., Shringarpure, A., and Vuduc, R. W. (2009). Direct n-body kernels for multicore

platforms. In ICPP, volume 9, pages 379–387.

Blasgen, M. W. and Eswaran, K. P. (1977). Storage and access in relational data bases. IBM

Systems Journal, 16(4):363–377.

Bratbergsengen, K. (1984). Hashing methods and relational algebra operations. In Proceedings

of the 10th International Conference on Very Large Data Bases, pages 323–333. Morgan

Kaufmann Publishers Inc.

Chae, H., Jung, I., Lee, H., Marru, S., Lee, S.-W., and Kim, S. (2013). Bio and health informatics

meets cloud: Biovlab as an example. Health Information Science and Systems, 1(1):6.

Chae, H., Rhee, S., Nephew, K. P., and Kim, S. (2014). Biovlab-mmia-ngs: microrna–mrna

integrated analysis using high-throughput sequencing data. Bioinformatics, page btu614.

Chao, C.-M. and Wang, Y.-Z. (2010). A multiple rendezvous multichannel mac protocol

for underwater sensor networks. In Wireless Communications and Networking Conference

(WCNC), 2010 IEEE, pages 1–6. IEEE.

Chapman, T. and Kalyanaraman, A. (2011). An openmp algorithm and implementation for

clustering biological graphs. In Proceedings of the first workshop on Irregular applications:

architectures and algorithm, pages 3–10. ACM.

https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/hpc/


www.manaraa.com

117

Chinchilla, F., Gamblin, T., Sommervoll, M., and Prins, J. F. (2004). Parallel n-body simulation

using gpus. Department of Computer Science, University of North Carolina at Chapel Hill,

http://gamma. cs. unc. edu/GPGP, Technical Report TR04-032.

Chlamtac, I. and Gumaste, A. (2003). Light-trails: A solution to ip centric communication

in the optical domain. In Quality of Service in Multiservice IP Networks, pages 634–644.

Springer.

Colbourn, C. J. (2010). CRC handbook of combinatorial designs. CRC press.

Connolly, A., Habib, S., Szalay, A., Borrill, J., Fuller, G., Gnedin, N., Heitmann, K., Jacobs,

D., Lamb, D., Mezzacappa, T., et al. (2013). Snowmass computing frontier: Computing for

the cosmic frontier, astrophysics, and cosmology. arXiv preprint arXiv:1311.2841.

Drew, C. (2010). Military is awash in data from drones. http://www.nytimes.com/2010/01/

11/business/11drone.html.

Driscoll, M., Georganas, E., Koanantakool, P., Solomonik, E., and Yelick, K. (2013). A

communication-optimal n-body algorithm for direct interactions. In Parallel & Distributed

Processing (IPDPS), 2013 IEEE 27th International Symposium on, pages 1075–1084. IEEE.

Ehnasri, R. and Navathe, S. B. (1989). Fundamentals of database systems. The Benj

amin/Cummings Publishing Company, Inc.

Fang, J., He, W., and Somani, A. K. (2004). Optimal light trail design in wdm optical networks.

In Communications, 2004 IEEE International Conference on, volume 3, pages 1699–1703.

IEEE.

Feng, T., Ruan, L., and Zhang, W. (2008). Intelligent p-cycle protection for multicast sessions

in wdm networks. In Communications, 2008. ICC’08. IEEE International Conference on,

pages 5165–5169. IEEE.

Ficklin, S. P. and Feltus, F. A. (2013). A systems-genetics approach and data mining tool

to assist in the discovery of genes underlying complex traits in oryza sativa. PloS one,

8(7):e68551.

http://www.nytimes.com/2010/01/11/business/11drone.html
http://www.nytimes.com/2010/01/11/business/11drone.html


www.manaraa.com

118

Fortes, M., Snelling, W., Reverter, A., Nagaraj, S., Lehnert, S., Hawken, R., DeAtley, K.,

Peters, S., Silver, G., Rincon, G., et al. (2012). Gene network analyses of first service concep-

tion in brangus heifers: Use of genome and trait associations, hypothalamic-transcriptome

information, and transcription factors. Journal of Animal Science, 90(9):2894–2906.

Gibson, S. M., Ficklin, S. P., Isaacson, S., Luo, F., Feltus, F. A., and Smith, M. C. (2013).

Massive-scale gene co-expression network construction and robustness testing using random

matrix theory. PloS one, 8(2):e55871.

Groppe, J. and Groppe, S. (2011). Accelerating large semantic web databases by parallel join

computations of sparql queries. ACM SIGAPP Applied Computing Review, 11(4):60–70.

Groppe, S. (2011). Data Management and Query Processing in Semantic Web Databases.

Springer.

Grover, W. D. and Shen, G. (2003). Extending the p-cycle concept to path-segment protection.

In Communications, 2003. ICC’03. IEEE International Conference on, volume 2, pages 1314–

1319. IEEE.

Gumaste, A. and Chlamtac, I. (2003). Light-trails: a novel conceptual framework for con-

ducting optical communications. In High Performance Switching and Routing, 2003, HPSR.

Workshop on, pages 251–256. IEEE.

Han, X., Li, J., and Yang, D. (2012). Pi-join: Efficiently processing join queries on massive

data. Knowledge and information systems, 32(3):527–557.

Hedegaard, R. (2016). Handshake problem. http://mathworld.wolfram.com/

HandshakeProblem.html.

Hudson, N. J., Reverter, A., and Dalrymple, B. P. (2009a). A differential wiring analysis of

expression data correctly identifies the gene containing the causal mutation. PLoS computa-

tional biology, 5(5):e1000382.

http://mathworld.wolfram.com/HandshakeProblem.html
http://mathworld.wolfram.com/HandshakeProblem.html


www.manaraa.com

119

Hudson, N. J., Reverter, A., Wang, Y., Greenwood, P. L., and Dalrymple, B. P. (2009b).

Inferring the transcriptional landscape of bovine skeletal muscle by integrating co-expression

networks. PloS one, 4(10):e7249.

Ishiyama, T., Nitadori, K., and Makino, J. (2012). 4.45 pflops astrophysical n-body simula-

tion on k computer–the gravitational trillion-body problem. In High Performance Comput-

ing, Networking, Storage and Analysis (SC), 2012 International Conference for, pages 1–10.

IEEE.

Ji, P. N. and Aono, Y. (2010). Colorless and directionless multi-degree reconfigurable optical

add/drop multiplexers. In Wireless and Optical Communications Conference (WOCC), 2010

19th Annual, pages 1–5. IEEE.

Khalil, A., Hadjiantonis, A., Ellinas, G., and Ali, M. (2005). Pre-planned multicast protection

approaches in wdm mesh networks. In Optical Communication, 2005. ECOC 2005. 31st

European Conference on, pages 25–26. IET.

Kitsuregawa, M., Tanaka, H., and Moto-Oka, T. (1983). Application of hash to data base

machine and its architecture. New Generation Computing, 1(1):63–74.

Kleinheksel, C. J. and Somani, A. K. (2015a). Enhancing fault tolerance capabilities in quorum-

based cycle routing. In Reliable Networks Design and Modeling (RNDM), 2015 7th Interna-

tional Workshop on, pages 27–33, Munich, Germany. IEEE.

Kleinheksel, C. J. and Somani, A. K. (2015b). Optical quorum cycles for efficient communica-

tion. Photonic Network Communications, pages 1–10.

Kleinheksel, C. J. and Somani, A. K. (2015c). Resource efficient redundancy using quorum-

based cycle routing in optical networks. In Transparent Optical Networks (ICTON), 2015

17th International Conference on, pages 1–4. IEEE.

Kleinheksel, C. J. and Somani, A. K. (2016). Scaling distributed all-pairs algorithms. In

Information Science and Applications (ICISA) 2016, pages 247–257. Springer.



www.manaraa.com

120

Koesterke, L., Koltes, J. E., Weeks, N. T., Milfeld, K., Vaughn, M. W., Reecy, J. M., and

Stanzione, D. (2014). Discovery of biological networks using an optimized partial correlation

coefficient with information theory algorithm on stampede’s xeon and xeon phi processors.

Concurrency and Computation: Practice and Experience, 26(13):2178–2190.

Koesterke, L., Milfeld, K., Vaughn, M. W., Stanzione, D., Koltes, J. E., Weeks, N. T., and Reecy,

J. M. (2013). Optimizing the pcit algorithm on stampede’s xeon and xeon phi processors

for faster discovery of biological networks. In Proceedings of the Conference on Extreme

Science and Engineering Discovery Environment: Gateway to Discovery, XSEDE ’13, pages

14:1–14:8, New York, NY, USA. ACM.

Krulǐs, M. and Yaghob, J. (2011). Revision of relational joins for multi-core and many-core ar-

chitectures. In Proceedings of the Dateso 2011 Workshop on Databases, Texts, Specifications

and Objects, Ṕısek, Czech Republic. Citeseer.

Kumar, V. and Agarwal, A. (2011). Multi-dimensional grid quorum consensus for high capac-

ity and availability in a replica control protocol. High Performance Architecture and Grid

Computing, pages 67–78.

Lastine, D. (2014). Efficient communication using multiple cycles and multiple channels. PhD

thesis, Iowa State University.

Lastine, D., Sankaran, S., and Somani, A. K. (2012). A fault-tolerant multipoint cycle routing

algorithm (mcra). In Broadband Communications, Networks, and Systems, pages 341–360.

Springer.

Li, Y., Wang, J., Gumaste, A., Xu, Y., and Xu, Y. (2008). Multicast routing in light-trail wdm

networks. In Global Telecommunications Conference, 2008. IEEE GLOBECOM 2008. IEEE,

pages 1–5. IEEE.

Lienhart, G., Kugel, A., and Manner, R. (2002). Using floating-point arithmetic on fpgas to ac-

celerate scientific n-body simulations. In Field-Programmable Custom Computing Machines,

2002. Proceedings. 10th Annual IEEE Symposium on, pages 182–191. IEEE.



www.manaraa.com

121

Luk, W.-S. and Wong, T.-T. (1997). Two new quorum based algorithms for distributed mutual

exclusion. In Distributed Computing Systems, 1997., Proceedings of the 17th International

Conference on, pages 100–106. IEEE.

Luo, H., Yu, H., Li, L., and Wang, S. (2006). On protecting dynamic multicast sessions in

survivable mesh wdm networks. In Communications, 2006. ICC’06. IEEE International

Conference on, volume 2, pages 835–840. IEEE.

Madsen, F. M. and Filinski, A. (2013). Towards a streaming model for nested data paral-

lelism. In Proceedings of the 2nd ACM SIGPLAN workshop on Functional high-performance

computing, pages 13–24. ACM.

Maekawa, M. (1985). An algorithm for mutual exclusion in decentralized systems. ACM

Transactions on Computer Systems (TOCS), 3(2):145–159.

Mandagere, N., Zhou, P., Smith, M. A., and Uttamchandani, S. (2008). Demystifying data

deduplication. In Proceedings of the ACM/IFIP/USENIX Middleware’08 Conference Com-

panion, pages 12–17. ACM.

Masuyama, S., Ibaraki, T., Nishio, S., and Hasegawa, T. (1987). Shortest semijoin schedule

for a local area distributed database system. Software Engineering, IEEE Transactions on,

13(5):602–606.

McCreight, E. (1972). Organization and maintenance of large ordered indices. Acta Informatica,

1:173–189.

Mishra, P. and Eich, M. H. (1992). Join processing in relational databases. ACM Computing

Surveys (CSUR), 24(1):63–113.

Moore, A. J., Quillen, A. C., and Edgar, R. G. (2008). Planet migration through a self-

gravitating planetesimal disk. arXiv preprint arXiv:0809.2855.

Moretti, C., Bui, H., Hollingsworth, K., Rich, B., Flynn, P., and Thain, D. (2010). All-pairs: An

abstraction for data-intensive computing on campus grids. Parallel and Distributed Systems,

IEEE Transactions on, 21(1):33–46.



www.manaraa.com

122

Ordonez, C. and Garćıa-Garćıa, J. (2010). Evaluating join performance on relational database

systems. JCSE, 4(4):276–290.

Phillips, P. J., Flynn, P. J., Scruggs, T., Bowyer, K. W., Chang, J., Hoffman, K., Marques, J.,

Min, J., and Worek, W. (2005). Overview of the face recognition grand challenge. In Com-

puter vision and pattern recognition, 2005. CVPR 2005. IEEE computer society conference

on, volume 1, pages 947–954. IEEE.

Plimpton, S. (1995). Fast parallel algorithms for short-range molecular dynamics. Journal of

computational physics, 117(1):1–19.

Qing, Y. and Ning, G. (2005). Protecting dynamic multicast sessions in optical wdm mesh

networks. In Information, Communications and Signal Processing, 2005 Fifth International

Conference on, pages 1187–1190. IEEE.

Ramamurthy, S., Sahasrabuddhe, L., and Mukherjee, B. (2003). Survivable wdm mesh net-

works. Journal of Lightwave Technology, 21(4):870.

Reverter, A. and Chan, E. K. (2008). Combining partial correlation and an information the-

ory approach to the reversed engineering of gene co-expression networks. Bioinformatics,

24(21):2491–2497.

Rytsareva, I. and Kalyanaraman, A. (2012). An efficient mapreduce algorighm for parallelizing

large-scale graph clustering.

Singhal, N. K., Sahasrabuddhe, L. H., and Mukherjee, B. (2003). Provisioning of survivable

multicast sessions against single link failures in optical wdm mesh networks. Journal of

lightwave technology, 21(11):2587.

Somani, A., Lastine, D., and Sankaran, S. (2011). Finding complex cycles through a set of

nodes. In Global Telecommunications Conference (GLOBECOM 2011), 2011 IEEE, pages

1–5.



www.manaraa.com

123

Somani, A. K. and Lastine, D. (2014). Optical paths supporting quorums for efficient com-

munication. In Optical Communications and Networks (ICOCN), 2014 13th International

Conference on. IEEE.

Tang, L., Huang, W., Razo, M., Sivasankaran, A., Tacca, M., and Fumagalli, A. (2011). Mul-

ticast tree computation in networks with multicast incapable nodes. In High Performance

Switching and Routing (HPSR), 2011 IEEE 12th International Conference on, pages 95–100.

IEEE.

Tauheed, F., Nobari, S., Biveinis, L., Heinis, T., and Ailamaki, A. (2013). Computational

neuroscience breakthroughs through innovative data management. In Advances in Databases

and Information Systems, pages 14–27. Springer.

Twitter (2016). Post statuses/update. https://dev.twitter.com/rest/reference/post/

statuses/update.

Valduriez, P. (1982). Semi-join algorithms for distributed database machines. In DDB, pages

23–37.

Valduriez, P. (1987). Join indices. ACM Transactions on Database Systems (TODS), 12(2):218–

246.

Van Meel, J. A., Arnold, A., Frenkel, D., Portegies Zwart, S., and Belleman, R. G. (2008).

Harvesting graphics power for md simulations. Molecular Simulation, 34(3):259–266.

Watson-Haigh, N. S., Kadarmideen, H. N., and Reverter, A. (2010). Pcit: an r package for

weighted gene co-expression networks based on partial correlation and information theory

approaches. Bioinformatics, 26(3):411–413.

Wetterstrand, K. (2013). Dna sequencing costs: Data from the nhgri genome sequencing pro-

gram (gsp). www.genome.gov/sequencingcosts/.

Wu, C. and Kalyanaraman, A. (2013). Gpu-accelerated protein family identification for

metagenomics. In Parallel and Distributed Processing Symposium Workshops & PhD Fo-

rum (IPDPSW), 2013 IEEE 27th International, pages 559–568. IEEE.

https://dev.twitter.com/rest/reference/post/statuses/update
https://dev.twitter.com/rest/reference/post/statuses/update
www.genome.gov/sequencingcosts/


www.manaraa.com

124

Yokota, R. and Barba, L. A. (2012). Hierarchical n-body simulations with autotuning for

heterogeneous systems. Computing in Science & Engineering, 14(3):30–39.

Zhang, F. and Zhong, W.-D. (2007). Applying p-cycles in dynamic provisioning of survivable

multicast sessions in optical wdm networks. In Optical Fiber Communication Conference,

page JWA74. Optical Society of America.

Zhang, F. and Zhong, W.-D. (2008). Performance evaluation of p-cycle based protection meth-

ods for provisioning of dynamic multicast sessions in mesh wdm networks. Photonic Network

Communications, 16(2):127–138.

Zhang, F., Zhong, W.-D., and Jin, Y. (2008). Optimizations of-cycle-based protection of optical

multicast sessions. Lightwave Technology, Journal of, 26(19):3298–3306.

Zhang, W., Kandah, F., Wang, C., and Li, H. (2011). Dynamic light trail routing in wdm

optical networks. Photonic Network Communications, 21(1):78–89.



www.manaraa.com

125

APPENDIX A OPTIMAL CYCLIC QUORUMS

Optimal cyclic quorums are difficult to find and require an exhaustive search Maekawa

(1985); Luk and Wong (1997). Once found, their benefits to all-pairs computations and com-

munications has been shown in our papers as well as related work Somani and Lastine (2014);

Kleinheksel and Somani (2015b, 2016).

To enable the use of optimal cyclic quorums and eliminate the need for others to perform

the necessary exhaustive search to find the quorum sets, Table A.1 has been reproduced from

known optimal cyclic quorums Luk and Wong (1997). We have verified that all of these are

correct and are optimal cyclic quorums.

Table A.1: Optimal cyclic quorums for N = 4 to 111

N |Si| = k Optimal Cyclic Quorum

4 3 1 2 3

5 3 1 2 3

6 3 1 2 4

7 3 1 2 4

8 4 1 2 3 5

9 4 1 2 3 5

10 4 1 2 3 6

11 4 1 2 3 6

12 4 1 2 4 8

13 4 1 2 4 10

14 5 1 2 3 4 8

15 5 1 2 3 4 8

16 5 1 2 3 6 9

17 5 1 2 3 5 13

18 5 1 2 3 6 12

19 5 1 2 3 7 10

20 6 1 2 3 4 7 11

21 5 1 2 5 15 17

22 6 1 2 3 4 8 12

23 6 1 2 3 4 8 12



www.manaraa.com

126

Table A.1: (Continued)

Optimal cyclic quorums for N = 4 to 111

N |Si| = k Optimal Cyclic Quorum

24 6 1 2 3 4 8 16

25 6 1 2 3 4 9 13

26 6 1 2 3 6 10 16

27 6 1 2 3 6 14 23

28 6 1 2 5 16 21 23

29 7 1 2 3 4 5 10 15

30 7 1 2 3 4 5 10 20

31 6 1 2 4 9 13 19

32 7 1 2 3 4 8 12 20

33 7 1 2 3 4 7 17 28

34 7 1 2 3 4 8 13 21

35 7 1 2 3 4 9 13 22

36 7 1 2 3 6 13 15 21

37 7 1 2 3 5 11 16 23

38 8 1 2 3 4 5 9 15 24

39 7 1 2 3 5 14 19 34

40 8 1 2 3 4 5 10 15 25

41 8 1 2 3 4 5 10 16 26

42 8 1 2 3 4 5 10 16 26

43 8 1 2 3 4 5 11 16 27

44 8 1 2 3 4 7 17 28 39

45 8 1 2 3 4 6 13 19 27

46 8 1 2 3 4 7 19 26 39

47 8 1 2 3 4 6 17 23 41

48 8 1 2 3 6 10 21 27 37

49 8 1 2 3 6 25 34 37 45

50 8 1 2 4 9 18 29 33 39

51 8 1 2 3 6 12 19 31 39

52 9 1 2 3 4 5 7 15 22 31

53 9 1 2 3 4 5 8 22 30 45

54 9 1 2 3 4 5 10 16 22 32

55 9 1 2 3 4 5 7 20 27 48

56 9 1 2 3 4 5 12 17 34 40

57 8 1 2 4 14 33 37 44 53

58 9 1 2 3 4 8 22 34 38 51

59 9 1 2 3 4 7 14 22 36 45

60 9 1 2 3 5 10 16 26 31 43

61 9 1 2 3 4 8 16 26 37 46

62 9 1 2 3 5 11 33 40 47 52



www.manaraa.com

127

Table A.1: (Continued)

Optimal cyclic quorums for N = 4 to 111

N |Si| = k Optimal Cyclic Quorum

63 9 1 2 3 7 9 21 39 42 55

64 9 1 2 3 6 15 17 35 43 60

65 9 1 2 3 7 11 29 36 52 55

66 10 1 2 3 4 5 6 14 20 40 47

67 10 1 2 3 4 5 6 13 21 27 40

68 10 1 2 3 4 5 11 17 22 39 46

69 10 1 2 3 4 5 11 18 23 34 46

70 10 1 2 3 4 5 10 21 36 50 63

71 10 1 2 3 4 5 11 19 24 35 47

72 10 1 2 3 4 7 12 19 32 38 52

73 9 1 2 4 8 16 32 37 55 64

74 10 1 2 3 4 8 29 31 44 58 66

75 10 1 2 3 6 9 19 31 33 42 57

76 10 1 2 3 7 10 26 36 47 59 64

77 10 1 2 3 5 11 16 38 50 57 62

78 10 1 2 3 8 14 17 34 52 56 71

79 10 1 2 3 7 14 29 32 48 49 72

80 11 1 2 3 4 5 6 11 24 41 57 72

81 11 1 2 3 4 5 6 13 21 27 40 54

82 11 1 2 3 4 5 6 13 21 27 41 54

83 11 1 2 3 4 5 6 13 22 28 41 55

84 11 1 2 3 4 5 8 19 27 47 55 76

85 11 1 2 3 4 5 10 14 26 41 55 69

86 11 1 2 3 4 5 12 18 25 30 49 55

87 11 1 2 3 4 5 11 43 55 63 68 74

88 11 1 2 3 4 6 12 25 30 37 44 74

89 11 1 2 3 4 6 13 19 44 58 66 72

90 11 1 2 3 4 7 34 47 55 68 75 82

91 10 1 2 4 10 28 50 57 62 78 82

92 11 1 2 3 5 41 51 52 60 65 72 78

93 11 1 2 3 6 15 21 25 32 53 61 69

94 12 1 2 3 4 5 6 7 15 24 31 47 62

95 11 1 2 3 6 9 18 29 40 54 64 83

96 12 1 2 3 4 5 6 9 22 31 54 63 87

97 12 1 2 3 4 5 6 10 18 34 44 55 80

98 12 1 2 3 4 5 6 12 28 41 55 70 82

99 12 1 2 3 4 5 6 13 22 28 35 49 63

100 12 1 2 3 4 5 6 14 21 29 35 57 64

101 12 1 2 3 4 5 6 13 50 64 73 79 86



www.manaraa.com

128

Table A.1: (Continued)

Optimal cyclic quorums for N = 4 to 111

N |Si| = k Optimal Cyclic Quorum

102 12 1 2 3 4 5 7 14 29 35 43 51 86

103 12 1 2 3 4 5 8 39 54 63 78 86 94

104 12 1 2 3 4 5 10 20 33 47 58 73 85

105 12 1 2 3 4 5 11 16 37 40 62 67 90

106 12 1 2 3 4 6 49 54 70 77 83 90 98

107 12 1 2 3 4 6 21 28 36 43 49 59 99

108 12 1 2 3 4 8 13 21 35 42 50 58 86

109 12 1 2 3 4 8 16 40 50 59 84 90 95

110 12 1 2 3 7 18 26 40 44 47 53 81 101

111 12 1 2 3 6 13 28 37 39 45 53 66 94



www.manaraa.com

129

APPENDIX B REDUNDANT CYCLIC QUORUMS

Optimal redundant cyclic quorums, like their non-redundant siblings in Appendix A, are

difficult to find and require an exhaustive search Maekawa (1985); Luk and Wong (1997). Once

found, their benefits to all-pairs applications has been shown in our publications Kleinheksel

and Somani (2015c,a).

To enable the use of redundant cyclic quorums and eliminate the need for others to perform

an exhaustive search to find the quorum sets, we have included Tables B.1 and B.2. The quorum

sets in Table B.1 guarantee a redundancy of 2 and those in Table B.2 guarantee a redundancy

of 3.

To speed up the
(
N
k

)
exhaustive search significantly, for some N and k inputs (marked with

an asterisk in the tables) we began searching with one greater than the ideal k value. This

increases the number of pairs formed for a given combination significantly and helped to arrive

at a quorum set solution sometimes days faster, than if beginning from the ideal k size. To

justify this heuristic technique consider that an increase from quorum size k = 14 to k = 15 is

less than an 8% increase. Additionally, many of these quorums likely are the optimal redundant

cyclic quorum sets given that in Table A.1 of the sets for N = 75, . . . , 111, i.e., 37 quorum sets

total, only 9 optimal cyclic quorum sets had the same size as their ideal k value. This means

that greater than 75% of the time, the optimal cyclic quorum set size k for these N were one

greater than their ideal size any ways. No quorum set redundant or non-redundant was more

than one greater than their ideal size though.



www.manaraa.com

130

Table B.1: Redundancy = 2, Cyclic quorums for N = 4 to 111

N |Si| = k Redundancy = 2, Cyclic Quorum

4 3 1 2 3

5 4 1 2 3 4

6 4 1 2 3 4

7 4 1 2 3 5

8 5 1 2 3 4 5

9 5 1 2 3 4 6

10 5 1 2 3 4 7

11 5 1 2 3 5 8

12 6 1 2 3 4 5 8

13 6 1 2 3 4 5 9

14 6 1 2 3 4 6 10

15 6 1 2 3 4 7 11

16 7 1 2 3 4 5 6 11

17 7 1 2 3 4 5 7 12

18 7 1 2 3 4 5 8 13

19 7 1 2 3 4 5 9 14

20 7 1 2 3 4 7 11 16

21 7 1 2 3 5 9 12 17

22 8 1 2 3 4 5 6 10 16

23 8 1 2 3 4 5 6 11 17

24 8 1 2 3 4 5 8 11 16

25 8 1 2 3 4 5 9 14 20

26 8 1 2 3 4 6 11 15 21

27 8 1 2 3 4 7 11 17 22

28 9 1 2 3 4 5 6 9 15 22

29 9 1 2 3 4 5 6 10 16 23

30 9 1 2 3 4 5 6 11 17 24

31 9 1 2 3 4 5 7 13 18 25

32 9 1 2 3 4 5 8 13 20 26

33 9 1 2 3 4 6 10 12 17 22

34 9 1 2 3 5 8 16 18 26 30

35 10 1 2 3 4 5 6 7 13 20 28

36 10 1 2 3 4 5 6 8 15 21 29

37 9 1 2 4 8 18 25 26 30 36

38 10 1 2 3 4 5 6 13 14 19 20

39 10 1 2 3 4 5 7 12 14 20 26

40 10 1 2 3 4 6 10 15 16 23 26

41 10 1 2 3 4 6 20 22 31 35 37

42 10 1 2 3 4 9 10 29 30 33 34

43 11 1 2 3 4 5 6 7 13 15 21 28



www.manaraa.com

131

Table B.1: (Continued)

Redundancy = 2, Cyclic quorums for N = 4 to 111

N |Si| = k Redundancy = 2, Cyclic Quorum

44 11 1 2 3 4 5 6 7 15 16 22 23

45 11 1 2 3 4 5 6 8 14 16 23 30

46 11 1 2 3 4 5 6 12 13 18 27 31

47 11 1 2 3 4 5 7 11 16 23 24 34

48 11 1 2 3 4 5 8 11 25 33 38 40

49 11 1 2 3 4 6 12 14 18 23 30 37

50 11 1 2 3 4 7 8 15 24 32 39 42

51 11 1 2 3 4 6 15 22 30 37 43 47

52 12 1 2 3 4 5 6 7 12 13 24 27 40

53 12 1 2 3 4 5 6 7 13 17 24 33 41

54 12 1 2 3 4 5 6 8 14 16 25 34 41

55 12 1 2 3 4 5 6 11 12 25 29 41 45

56 12 1 2 3 4 5 6 12 20 35 36 41 48

57 12 1 2 3 4 5 7 23 34 36 44 46 53

58 12 1 2 3 4 5 7 15 29 37 42 44 53

59 12 1 2 3 4 6 8 20 22 28 29 50 52

60 12 1 2 3 4 6 16 27 35 43 44 51 57

61 12 1 2 3 4 7 17 22 31 39 45 52 56

62 12 1 2 3 4 7 8 17 18 25 26 37 38

63 12 1 2 3 7 10 11 22 36 42 47 49 52

64 13 1 2 3 4 5 6 7 14 23 40 41 47 55

65 13 1 2 3 4 5 6 8 14 34 44 45 52 54

66 13 1 2 3 4 5 6 10 16 21 28 30 38 51

67 13 1 2 3 4 5 6 12 32 39 47 51 56 57

68 13 1 2 3 4 5 7 10 18 29 30 39 53 60

69 13 1 2 3 4 5 9 21 33 38 49 51 63 64

70 13 1 2 3 4 5 8 9 24 25 33 34 60 61

71 13 1 2 3 4 6 13 22 23 28 30 34 36 59

72 13 1 2 3 5 12 17 20 25 33 39 45 49 66

73 14 1 2 3 4 5 6 7 10 17 25 35 37 54 63

74 14 1 2 3 4 5 6 7 13 16 21 32 34 39 56

75 14 1 2 3 4 5 6 7 13 21 32 35 42 55 64

76 14 1 2 3 4 5 6 9 10 19 22 33 34 44 59

77 14 1 2 3 4 5 6 9 16 26 32 41 50 59 67

78 14 1 2 3 4 5 6 9 10 27 28 37 38 67 68

79 14 1 2 3 4 5 6 15 25 26 32 33 38 41 66

80 14 1 2 3 4 5 8 17 27 35 45 52 62 68 73

81 14 1 2 3 4 5 9 17 26 36 42 55 62 68 73

82 14 1 2 3 4 7 25 34 38 49 50 64 66 76 78



www.manaraa.com

132

Table B.1: (Continued)

Redundancy = 2, Cyclic quorums for N = 4 to 111

N |Si| = k Redundancy = 2, Cyclic Quorum

83 14 1 2 3 4 7 10 27 34 35 48 56 70 74 75

84 14 1 2 3 4 8 23 24 29 32 33 40 50 73 74

*85 *15 1 2 3 4 5 6 7 10 17 20 28 36 48 56 65

*86 *15 1 2 3 4 5 6 7 10 11 30 31 41 42 74 75

*87 *15 1 2 3 4 5 6 7 13 20 28 40 49 59 68 77

*88 *15 1 2 3 4 5 6 10 13 20 27 29 40 42 48 60

*89 *15 1 2 3 4 5 6 8 17 28 29 36 38 42 46 75

*90 *15 1 2 3 4 5 6 10 13 16 28 42 45 58 72 75

*91 *15 1 2 3 4 5 9 10 18 29 42 53 63 65 75 78

*92 *15 1 2 3 4 5 9 10 20 22 32 40 46 55 69 80

93 15 1 2 3 4 6 10 16 26 31 48 57 59 65 76 83

94 15 1 2 3 4 7 11 17 20 31 36 48 56 63 74 75

*95 *16 1 2 3 4 5 6 7 8 11 20 32 40 51 62 73 83

*96 *16 1 2 3 4 5 6 7 8 14 22 31 44 54 65 75 85

*97 *16 1 2 3 4 5 6 7 9 19 25 46 54 65 68 74 91

*98 *16 1 2 3 4 5 6 7 11 18 19 28 29 39 49 58 68

*99 *16 1 2 3 4 5 6 7 12 14 25 26 42 59 60 74 75

*100 *16 1 2 3 4 5 6 7 12 19 33 38 41 58 64 82 91

*101 *16 1 2 3 4 5 6 10 16 26 34 44 45 54 73 80 90

*102 *16 1 2 3 4 5 6 14 17 23 41 48 49 55 78 83 88

*103 *16 1 2 3 4 5 8 10 18 26 37 45 57 63 77 83 96

*104 *16 1 2 3 4 5 8 13 22 24 37 52 64 68 74 81 82

*105 *16 1 2 3 4 5 8 13 30 35 51 56 71 76 90 95 100

*106 *16 1 2 3 4 8 11 19 23 34 36 46 50 59 64 70 88

*107 *17 1 2 3 4 5 6 7 8 10 31 33 41 43 52 65 95 97

*108 *17 1 2 3 4 5 6 7 8 12 20 21 31 32 43 54 64 75

*109 *17 1 2 3 4 5 6 7 8 13 22 31 45 64 65 78 86 100

*110 *17 1 2 3 4 5 6 7 8 20 27 32 43 52 60 70 81 103

*111 *17 1 2 3 4 5 6 7 11 21 28 29 40 41 61 69 70 101



www.manaraa.com

133

Table B.2: Redundancy = 3, Cyclic quorums for N = 4 to 101

N |Si| = k Redundancy = 3, Cyclic Quorum

4 4 1 2 3 4

5 4 1 2 3 4

6 5 1 2 3 4 5

7 5 1 2 3 4 5

8 6 1 2 3 4 5 6

9 6 1 2 3 4 5 6

10 6 1 2 3 4 6 7

11 6 1 2 3 5 6 8

12 7 1 2 3 4 5 7 8

13 7 1 2 3 4 5 7 9

14 7 1 2 3 5 9 10 12

15 7 1 2 3 5 6 9 11

16 8 1 2 3 4 5 6 9 11

17 8 1 2 3 4 5 7 9 12

18 8 1 2 3 4 6 7 11 13

19 8 1 2 3 4 6 8 12 15

20 9 1 2 3 4 5 6 8 11 14

21 9 1 2 3 4 5 6 8 16 17

22 9 1 2 3 4 5 7 11 13 18

23 9 1 2 3 4 5 7 11 14 19

24 9 1 2 3 4 7 12 15 19 21

25 10 1 2 3 4 5 6 7 11 13 18

26 10 1 2 3 4 5 6 8 13 15 21

27 10 1 2 3 4 5 6 8 13 16 22

28 10 1 2 3 4 5 8 11 15 19 24

29 10 1 2 3 4 5 8 14 18 23 26

30 11 1 2 3 4 5 6 7 9 15 17 24

31 11 1 2 3 4 5 6 7 9 15 18 25

32 11 1 2 3 4 5 6 8 13 17 21 27

33 11 1 2 3 4 5 6 9 13 22 23 28

34 11 1 2 3 4 5 7 10 12 22 24 28

35 11 1 2 3 4 5 9 10 13 19 24 26

36 11 1 2 3 5 7 13 14 15 20 23 34

37 12 1 2 3 4 5 6 7 10 15 25 26 32

38 12 1 2 3 4 5 6 7 10 20 25 31 32

39 12 1 2 3 4 5 6 7 11 15 26 27 33

40 12 1 2 3 4 5 6 11 12 17 24 28 32

41 12 1 2 3 4 5 8 11 19 21 23 32 37

42 12 1 2 3 4 5 9 15 16 20 25 28 37

43 12 1 2 3 4 6 11 15 18 26 28 34 40



www.manaraa.com

134

Table B.2: (Continued)

Redundancy = 3, Cyclic quorums for N = 4 to 101

N |Si| = k Redundancy = 3, Cyclic Quorum

44 13 1 2 3 4 5 6 7 11 15 26 32 33 39

45 13 1 2 3 4 5 6 7 10 18 19 25 29 39

46 13 1 2 3 4 5 6 8 13 17 23 25 31 38

47 13 1 2 3 4 5 6 9 16 25 26 34 37 43

48 13 1 2 3 4 5 8 9 15 19 20 28 29 37

49 13 1 2 3 4 5 8 14 16 27 32 36 37 44

50 14 1 2 3 4 5 6 7 8 13 16 23 26 32 40

51 14 1 2 3 4 5 6 7 8 15 16 24 31 35 41

52 14 1 2 3 4 5 6 7 9 15 19 26 28 35 43

53 14 1 2 3 4 5 6 7 10 16 24 31 36 41 47

54 14 1 2 3 4 5 6 7 13 20 23 28 34 43 48

55 14 1 2 3 4 5 6 8 15 21 26 32 40 47 48

56 14 1 2 3 4 5 7 14 19 21 27 31 36 42 50

57 14 1 2 3 4 5 8 11 15 20 23 28 31 37 47

58 14 1 2 3 5 6 19 24 25 35 39 46 51 52 54

59 15 1 2 3 4 5 6 7 8 13 20 21 30 38 40 51

60 15 1 2 3 4 5 6 7 9 13 20 31 40 41 49 50

61 15 1 2 3 4 5 6 7 11 17 23 31 32 43 50 55

62 15 1 2 3 4 5 6 7 12 24 26 33 39 49 52 57

63 15 1 2 3 4 5 6 8 13 21 26 31 37 43 52 57

64 15 1 2 3 4 5 6 10 14 18 24 25 31 36 41 50

65 15 1 2 3 4 5 8 11 17 29 34 38 45 48 53 56

66 15 1 2 3 5 6 8 13 19 28 34 38 47 48 55 56

*67 *16 1 2 3 4 5 6 7 8 11 22 24 32 36 47 56 62

*68 *16 1 2 3 4 5 6 7 8 12 22 27 33 40 49 57 61

*69 *16 1 2 3 4 5 6 7 8 15 23 24 34 41 47 49 61

*70 *16 1 2 3 4 5 6 7 12 15 20 32 38 47 52 54 61

*71 *16 1 2 3 4 5 6 7 11 17 18 20 26 38 48 49 56

72 16 1 2 3 4 5 6 8 11 17 26 34 35 42 53 61 63

73 16 1 2 3 4 5 6 11 14 19 31 38 45 54 56 60 66

74 16 1 2 3 4 5 9 20 31 38 43 46 52 53 58 62 66

75 16 1 2 3 4 7 8 23 25 28 37 41 51 59 66 68 70

*76 *17 1 2 3 4 5 6 7 8 9 17 27 36 44 48 55 62 68

*77 *17 1 2 3 4 5 6 7 8 12 19 28 30 40 48 51 65 70

*78 *17 1 2 3 4 5 6 7 8 13 16 26 40 48 52 56 63 65

*79 *17 1 2 3 4 5 6 7 10 13 21 35 42 46 55 58 65 68

*80 *17 1 2 3 4 5 6 7 13 16 34 41 44 50 58 63 66 70

*81 *17 1 2 3 4 5 6 10 16 29 36 46 47 54 62 63 68 74

82 17 1 2 3 4 5 6 11 12 20 24 30 40 47 55 60 61 72



www.manaraa.com

135

T
ab

le
B

.2
:

(C
on

ti
n
u

ed
)

R
ed

u
n

d
an

cy
=

3,
C

y
cl

ic
q
u

or
u

m
s

fo
r
N

=
4

to
10

1

N
|S

i|
=

k
R

e
d

u
n

d
a
n

c
y

=
3
,

C
y
c
li
c

Q
u

o
ru

m

8
3

1
7

1
2

3
4

5
8

13
17

23
24

30
36

41
44

5
4

62
7
1

*
84

*
18

1
2

3
4

5
6

7
8

9
14

17
28

43
52

5
6

60
6
8

70

*
85

*
18

1
2

3
4

5
6

7
8

9
16

17
26

27
28

4
3

45
5
6

59

*
86

*
18

1
2

3
4

5
6

7
8

10
17

27
37

38
46

50
6
4

72
7
5

*
87

*
18

1
2

3
4

5
6

7
8

12
16

23
34

42
51

58
6
5

70
7
8

*
88

*
18

1
2

3
4

5
6

7
8

15
23

24
35

42
50

56
6
6

67
8
0

*
89

*
18

1
2

3
4

5
6

7
12

13
14

35
36

37
49

5
0

74
7
5

76

*
90

*
18

1
2

3
4

5
6

7
13

15
22

28
30

35
40

5
1

54
6
1

75

*
91

*
18

1
2

3
4

5
6

8
13

20
30

39
43

48
61

6
4

72
7
8

84

*
92

*
19

1
2

3
4

5
6

7
8

9
10

17
26

29
37

4
7

54
6
0

69
8
3

*
93

*
19

1
2

3
4

5
6

7
8

9
11

19
23

35
51

6
0

62
7
1

73
8
1

*
94

*
19

1
2

3
4

5
6

7
8

9
12

21
24

34
48

5
7

60
6
8

71
8
1

*
95

*
19

1
2

3
4

5
6

7
8

9
15

23
24

36
37

4
6

47
4
8

73
8
4

*
96

*
19

1
2

3
4

5
6

7
8

11
23

27
35

38
44

49
5
9

72
8
4

90

*
97

*
19

1
2

3
4

5
6

7
8

11
16

28
31

35
47

53
6
4

69
8
5

90

*
98

*
19

1
2

3
4

5
6

7
9

16
18

31
33

40
41

47
5
1

59
8
0

84

*
99

*
19

1
2

3
4

5
6

7
8

16
23

24
32

45
51

57
6
5

68
7
5

91

*1
0
0

*1
9

1
2

3
4

5
6

7
12

23
28

37
42

46
51

75
8
0

88
9
2

95

*1
0
1

*1
9

1
2

3
4

5
6

7
11

12
13

34
35

36
47

48
4
9

86
8
7

88


	2016
	Efficient computation and communication management for all-pairs interactions
	Cory James Kleinheksel
	Recommended Citation


	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ACKNOWLEDGEMENTS
	ABSTRACT
	1 THE PROBLEM
	1.1 Communication Application
	1.2 Computation Applications
	1.2.1 Acceleration of applications
	1.2.2 Relaxing the all elements present requirement
	1.2.3 Scaling all-pairs algorithms

	1.3 Contributions
	1.3.1 Quorums
	1.3.2 Computation
	1.3.3 Communication


	2 ALL-PAIRS COMPUTATIONS
	2.1 Database Joins
	2.1.1 Algorithm implementations
	2.1.2 Data structures
	2.1.3 Distributed database joins

	2.2 Spatial Databases
	2.3 N-Body Problems
	2.3.1 Approximation of forces
	2.3.2 Parallelizing the computation

	2.4 Metagenomics
	2.4.1 Contributions from literature
	2.4.2 Challenges

	2.5 Gene Co-Expression Networks
	2.5.1 PCIT introduced
	2.5.2 Parallel PCIT algorithm using MPI
	2.5.3 Parallel PCIT algorithm using OpenMP


	3 OPTICAL COMMUNICATION NETWORKS
	3.1 Network Model
	3.2 Light-Trails
	3.3 Light-Trails, Cycle Routing, and Fault Tolerance
	3.4 Quorums Sets for Routing
	3.4.1 Point-to-point traffic
	3.4.2 Multicast traffic
	3.4.3 Broadcast traffic
	3.4.4 Efficiency analysis


	4 ALL-PAIRS PROBLEM
	4.1 General All-Pairs Problem Definition
	4.2 Distributed All-Pairs Problem Definition

	5 QUORUMS AND CYCLIC QUORUMS
	5.1 Defining Quorum Sets
	5.2 Defining Cyclic Quorum Sets
	5.3 All-Pairs Property for Quorum Sets
	5.3.1 All-pairs property
	5.3.2 Cyclic quorums have the all-pairs property

	5.4 Redundant Cyclic Quorums Sets

	6 ALL-PAIRS APPLICATIONS IN COMPUTATION OPTIMIZATIONS
	6.1 Bioinformatics PCIT Application
	6.2 Test Setup
	6.3 Results
	6.3.1 Memory usage performance
	6.3.2 Runtime execution performance

	6.4 Adding Computation Management Logic
	6.4.1 Impact of cyclic quorum size
	6.4.2 Computation management logic
	6.4.3 Impacts of managing quorum set all-pairs computations


	7 ALL-PAIRS APPLICATIONS IN FAULT TOLERANT OPTICAL COMMUNICATION OPTIMIZATIONS
	7.1 Fault Model
	7.2 Paired Cycle Fault Simulation
	7.3 Improving Fault Tolerance
	7.3.1 Additional cycle fault protection
	7.3.2 Modifying the cycle routing algorithm
	7.3.3 Redundant cyclic quorums sets

	7.4 Redundant Cyclic Quorums Set - Paired Cycle Network Analysis
	7.4.1 Fault-free operational analysis
	7.4.2 Fault tolerance operational analysis

	7.5 Redundant Cyclic Quorums Set - Single Cycle Network Analysis
	7.5.1 Fault-free operational analysis
	7.5.2 Fault-tolerant operational analysis

	7.6 Improving Single Cycle Routing Based on Redundant Cyclic Quorums
	7.6.1 Greedy cycle direction based on missing pairs
	7.6.2 Greedy missing pairs heuristic results


	8 CONCLUSIONS
	8.1 Quorums
	8.2 Computation Application
	8.3 Communication Application

	BIBLIOGRAPHY
	A OPTIMAL CYCLIC QUORUMS
	B REDUNDANT CYCLIC QUORUMS

